Strong subdifferentiability and local Bishop–Phelps–Bollobás properties
- Autores
- Dantas, Sheldon; Kim, Sun Kwang; Lee, Han Ju; Mazzitelli, Martin Diego
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Some local versions of the Bishop–Phelps–Bollobás property for operators have been recently presented in Dantas et al. (J Math Anal Appl 468(1):304–323, 2018). In the present article, we continue studying these properties for multilinear mappings. We show some differences between the local and uniform versions of these and also provide some interesting examples which show that this study is not just a mere generalization of the linear case. As a consequence of our results, we get that, for 2 < p, q< ∞, the norm of the projective tensor product ℓp⊗ ^ πℓq is strongly subdifferentiable. Moreover, we present necessary and sufficient conditions for the norm of a Banach space Y to be strongly subdifferentiable through the study of these properties for bilinear mappings on ℓ1N×Y.
Fil: Dantas, Sheldon. Czech Technical University in Prague; República Checa
Fil: Kim, Sun Kwang. Chungbuk National University; Corea del Sur
Fil: Lee, Han Ju. Dongguk University, Seoul; Corea del Sur
Fil: Mazzitelli, Martin Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Cuyo; Argentina. Comisión Nacional de Energía Atómica. Fundación José A. Balseiro; Argentina - Materia
-
BANACH SPACE
BISHOP–PHELPS–BOLLOBÁS PROPERTY
NORM ATTAINING OPERATORS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/126401
Ver los metadatos del registro completo
| id |
CONICETDig_45face20dfecfdffa7ac8b607408803c |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/126401 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Strong subdifferentiability and local Bishop–Phelps–Bollobás propertiesDantas, SheldonKim, Sun KwangLee, Han JuMazzitelli, Martin DiegoBANACH SPACEBISHOP–PHELPS–BOLLOBÁS PROPERTYNORM ATTAINING OPERATORShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Some local versions of the Bishop–Phelps–Bollobás property for operators have been recently presented in Dantas et al. (J Math Anal Appl 468(1):304–323, 2018). In the present article, we continue studying these properties for multilinear mappings. We show some differences between the local and uniform versions of these and also provide some interesting examples which show that this study is not just a mere generalization of the linear case. As a consequence of our results, we get that, for 2 < p, q< ∞, the norm of the projective tensor product ℓp⊗ ^ πℓq is strongly subdifferentiable. Moreover, we present necessary and sufficient conditions for the norm of a Banach space Y to be strongly subdifferentiable through the study of these properties for bilinear mappings on ℓ1N×Y.Fil: Dantas, Sheldon. Czech Technical University in Prague; República ChecaFil: Kim, Sun Kwang. Chungbuk National University; Corea del SurFil: Lee, Han Ju. Dongguk University, Seoul; Corea del SurFil: Mazzitelli, Martin Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Cuyo; Argentina. Comisión Nacional de Energía Atómica. Fundación José A. Balseiro; ArgentinaReal Acad Ciencias Exactas Fisicas & Naturales2020-01-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/126401Dantas, Sheldon; Kim, Sun Kwang; Lee, Han Ju; Mazzitelli, Martin Diego; Strong subdifferentiability and local Bishop–Phelps–Bollobás properties; Real Acad Ciencias Exactas Fisicas & Naturales; Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A-matematicas; 114; 47; 2-1-2020; 1-161578-7303CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s13398-019-00741-1info:eu-repo/semantics/altIdentifier/doi/10.1007/s13398-019-00741-1info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1905.08483info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:16:56Zoai:ri.conicet.gov.ar:11336/126401instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:16:56.494CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Strong subdifferentiability and local Bishop–Phelps–Bollobás properties |
| title |
Strong subdifferentiability and local Bishop–Phelps–Bollobás properties |
| spellingShingle |
Strong subdifferentiability and local Bishop–Phelps–Bollobás properties Dantas, Sheldon BANACH SPACE BISHOP–PHELPS–BOLLOBÁS PROPERTY NORM ATTAINING OPERATORS |
| title_short |
Strong subdifferentiability and local Bishop–Phelps–Bollobás properties |
| title_full |
Strong subdifferentiability and local Bishop–Phelps–Bollobás properties |
| title_fullStr |
Strong subdifferentiability and local Bishop–Phelps–Bollobás properties |
| title_full_unstemmed |
Strong subdifferentiability and local Bishop–Phelps–Bollobás properties |
| title_sort |
Strong subdifferentiability and local Bishop–Phelps–Bollobás properties |
| dc.creator.none.fl_str_mv |
Dantas, Sheldon Kim, Sun Kwang Lee, Han Ju Mazzitelli, Martin Diego |
| author |
Dantas, Sheldon |
| author_facet |
Dantas, Sheldon Kim, Sun Kwang Lee, Han Ju Mazzitelli, Martin Diego |
| author_role |
author |
| author2 |
Kim, Sun Kwang Lee, Han Ju Mazzitelli, Martin Diego |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
BANACH SPACE BISHOP–PHELPS–BOLLOBÁS PROPERTY NORM ATTAINING OPERATORS |
| topic |
BANACH SPACE BISHOP–PHELPS–BOLLOBÁS PROPERTY NORM ATTAINING OPERATORS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Some local versions of the Bishop–Phelps–Bollobás property for operators have been recently presented in Dantas et al. (J Math Anal Appl 468(1):304–323, 2018). In the present article, we continue studying these properties for multilinear mappings. We show some differences between the local and uniform versions of these and also provide some interesting examples which show that this study is not just a mere generalization of the linear case. As a consequence of our results, we get that, for 2 < p, q< ∞, the norm of the projective tensor product ℓp⊗ ^ πℓq is strongly subdifferentiable. Moreover, we present necessary and sufficient conditions for the norm of a Banach space Y to be strongly subdifferentiable through the study of these properties for bilinear mappings on ℓ1N×Y. Fil: Dantas, Sheldon. Czech Technical University in Prague; República Checa Fil: Kim, Sun Kwang. Chungbuk National University; Corea del Sur Fil: Lee, Han Ju. Dongguk University, Seoul; Corea del Sur Fil: Mazzitelli, Martin Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Cuyo; Argentina. Comisión Nacional de Energía Atómica. Fundación José A. Balseiro; Argentina |
| description |
Some local versions of the Bishop–Phelps–Bollobás property for operators have been recently presented in Dantas et al. (J Math Anal Appl 468(1):304–323, 2018). In the present article, we continue studying these properties for multilinear mappings. We show some differences between the local and uniform versions of these and also provide some interesting examples which show that this study is not just a mere generalization of the linear case. As a consequence of our results, we get that, for 2 < p, q< ∞, the norm of the projective tensor product ℓp⊗ ^ πℓq is strongly subdifferentiable. Moreover, we present necessary and sufficient conditions for the norm of a Banach space Y to be strongly subdifferentiable through the study of these properties for bilinear mappings on ℓ1N×Y. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-01-02 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/126401 Dantas, Sheldon; Kim, Sun Kwang; Lee, Han Ju; Mazzitelli, Martin Diego; Strong subdifferentiability and local Bishop–Phelps–Bollobás properties; Real Acad Ciencias Exactas Fisicas & Naturales; Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A-matematicas; 114; 47; 2-1-2020; 1-16 1578-7303 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/126401 |
| identifier_str_mv |
Dantas, Sheldon; Kim, Sun Kwang; Lee, Han Ju; Mazzitelli, Martin Diego; Strong subdifferentiability and local Bishop–Phelps–Bollobás properties; Real Acad Ciencias Exactas Fisicas & Naturales; Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A-matematicas; 114; 47; 2-1-2020; 1-16 1578-7303 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s13398-019-00741-1 info:eu-repo/semantics/altIdentifier/doi/10.1007/s13398-019-00741-1 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1905.08483 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Real Acad Ciencias Exactas Fisicas & Naturales |
| publisher.none.fl_str_mv |
Real Acad Ciencias Exactas Fisicas & Naturales |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782591464636416 |
| score |
12.982451 |