Grassmann geometry of zero sets in reproducing kernel Hilbert spaces

Autores
Andruchow, Esteban; Chiumiento, Eduardo Hernan; Varela, Alejandro
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let H be a reproducing kernel Hilbert space of functions on a set X. We study the problem of finding a minimal geodesic of the Grassmann manifold of H that joins two subspaces consisting of functions which vanish on given finite subsets of X. We establish a necessary and sufficient condition for existence and uniqueness of geodesics, and we then analyze it in examples. We discuss the relation of the geodesic distance with other known metrics when the mentioned finite subsets are singletons. We find estimates on the upper and lower eigenvalues of the unique self-adjoint operators which define the minimal geodesics, which can be made more precise when the underlying space is the Hardy space. Also for the Hardy space we discuss the existence of geodesics joining subspaces of functions vanishing on infinite subsets of the disk, and we investigate when the product of projections onto this type of subspaces is compact.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Materia
ANALYTIC FUNCTIONS SPACES
GEODESICS
GRASSMANN MANIFOLD
HARDY SPACE
REPRODUCING KERNELS
ZERO SETS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/135480

id CONICETDig_8c5b76c4719fd7bf67222f29e0976bf7
oai_identifier_str oai:ri.conicet.gov.ar:11336/135480
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Grassmann geometry of zero sets in reproducing kernel Hilbert spacesAndruchow, EstebanChiumiento, Eduardo HernanVarela, AlejandroANALYTIC FUNCTIONS SPACESGEODESICSGRASSMANN MANIFOLDHARDY SPACEREPRODUCING KERNELSZERO SETShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let H be a reproducing kernel Hilbert space of functions on a set X. We study the problem of finding a minimal geodesic of the Grassmann manifold of H that joins two subspaces consisting of functions which vanish on given finite subsets of X. We establish a necessary and sufficient condition for existence and uniqueness of geodesics, and we then analyze it in examples. We discuss the relation of the geodesic distance with other known metrics when the mentioned finite subsets are singletons. We find estimates on the upper and lower eigenvalues of the unique self-adjoint operators which define the minimal geodesics, which can be made more precise when the underlying space is the Hardy space. Also for the Hardy space we discuss the existence of geodesics joining subspaces of functions vanishing on infinite subsets of the disk, and we investigate when the product of projections onto this type of subspaces is compact.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; ArgentinaFil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaAcademic Press Inc Elsevier Science2021-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/135480Andruchow, Esteban; Chiumiento, Eduardo Hernan; Varela, Alejandro; Grassmann geometry of zero sets in reproducing kernel Hilbert spaces; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 500; 1; 8-2021; 1-310022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2021.125107info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022247X21001864info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2007.16181info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:13:18Zoai:ri.conicet.gov.ar:11336/135480instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:13:18.938CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Grassmann geometry of zero sets in reproducing kernel Hilbert spaces
title Grassmann geometry of zero sets in reproducing kernel Hilbert spaces
spellingShingle Grassmann geometry of zero sets in reproducing kernel Hilbert spaces
Andruchow, Esteban
ANALYTIC FUNCTIONS SPACES
GEODESICS
GRASSMANN MANIFOLD
HARDY SPACE
REPRODUCING KERNELS
ZERO SETS
title_short Grassmann geometry of zero sets in reproducing kernel Hilbert spaces
title_full Grassmann geometry of zero sets in reproducing kernel Hilbert spaces
title_fullStr Grassmann geometry of zero sets in reproducing kernel Hilbert spaces
title_full_unstemmed Grassmann geometry of zero sets in reproducing kernel Hilbert spaces
title_sort Grassmann geometry of zero sets in reproducing kernel Hilbert spaces
dc.creator.none.fl_str_mv Andruchow, Esteban
Chiumiento, Eduardo Hernan
Varela, Alejandro
author Andruchow, Esteban
author_facet Andruchow, Esteban
Chiumiento, Eduardo Hernan
Varela, Alejandro
author_role author
author2 Chiumiento, Eduardo Hernan
Varela, Alejandro
author2_role author
author
dc.subject.none.fl_str_mv ANALYTIC FUNCTIONS SPACES
GEODESICS
GRASSMANN MANIFOLD
HARDY SPACE
REPRODUCING KERNELS
ZERO SETS
topic ANALYTIC FUNCTIONS SPACES
GEODESICS
GRASSMANN MANIFOLD
HARDY SPACE
REPRODUCING KERNELS
ZERO SETS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let H be a reproducing kernel Hilbert space of functions on a set X. We study the problem of finding a minimal geodesic of the Grassmann manifold of H that joins two subspaces consisting of functions which vanish on given finite subsets of X. We establish a necessary and sufficient condition for existence and uniqueness of geodesics, and we then analyze it in examples. We discuss the relation of the geodesic distance with other known metrics when the mentioned finite subsets are singletons. We find estimates on the upper and lower eigenvalues of the unique self-adjoint operators which define the minimal geodesics, which can be made more precise when the underlying space is the Hardy space. Also for the Hardy space we discuss the existence of geodesics joining subspaces of functions vanishing on infinite subsets of the disk, and we investigate when the product of projections onto this type of subspaces is compact.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
description Let H be a reproducing kernel Hilbert space of functions on a set X. We study the problem of finding a minimal geodesic of the Grassmann manifold of H that joins two subspaces consisting of functions which vanish on given finite subsets of X. We establish a necessary and sufficient condition for existence and uniqueness of geodesics, and we then analyze it in examples. We discuss the relation of the geodesic distance with other known metrics when the mentioned finite subsets are singletons. We find estimates on the upper and lower eigenvalues of the unique self-adjoint operators which define the minimal geodesics, which can be made more precise when the underlying space is the Hardy space. Also for the Hardy space we discuss the existence of geodesics joining subspaces of functions vanishing on infinite subsets of the disk, and we investigate when the product of projections onto this type of subspaces is compact.
publishDate 2021
dc.date.none.fl_str_mv 2021-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/135480
Andruchow, Esteban; Chiumiento, Eduardo Hernan; Varela, Alejandro; Grassmann geometry of zero sets in reproducing kernel Hilbert spaces; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 500; 1; 8-2021; 1-31
0022-247X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/135480
identifier_str_mv Andruchow, Esteban; Chiumiento, Eduardo Hernan; Varela, Alejandro; Grassmann geometry of zero sets in reproducing kernel Hilbert spaces; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 500; 1; 8-2021; 1-31
0022-247X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2021.125107
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0022247X21001864
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2007.16181
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980702437507072
score 12.993085