Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations

Autores
Silva, Luis O.; Toloza, Julio Hugo
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We derive a description of the family of canonical selfadjoint extensions of the operator of multiplication in a de Branges space in terms of singular rank-one perturbations using distinguished elements from the set of functions associated with a de Branges space. The scale of rigged Hilbert spaces associated with this construction is also studied from the viewpoint of de Branges's theory.
Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; México
Fil: Toloza, Julio Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Materia
46E22
47A70
47B25
DE BRANGES SPACES
SCALE OF HILBERT SPACES
SINGULAR RANK-ONE PERTURBATIONS
V. BOLOTNIKOV
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/85579

id CONICETDig_5b6a4421a66739f6b3af0759e2b29ef0
oai_identifier_str oai:ri.conicet.gov.ar:11336/85579
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbationsSilva, Luis O.Toloza, Julio Hugo46E2247A7047B25DE BRANGES SPACESSCALE OF HILBERT SPACESSINGULAR RANK-ONE PERTURBATIONSV. BOLOTNIKOVhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We derive a description of the family of canonical selfadjoint extensions of the operator of multiplication in a de Branges space in terms of singular rank-one perturbations using distinguished elements from the set of functions associated with a de Branges space. The scale of rigged Hilbert spaces associated with this construction is also studied from the viewpoint of de Branges's theory.Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; MéxicoFil: Toloza, Julio Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaTaylor & Francis2019-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/85579Silva, Luis O.; Toloza, Julio Hugo; Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations; Taylor & Francis; Complex Variables and Elliptic Equations; 64; 9; 9-2019; 1477-14991747-6933CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/17476933.2018.1536701info:eu-repo/semantics/altIdentifier/doi/10.1080/17476933.2018.1536701info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1706.09400info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:16:22Zoai:ri.conicet.gov.ar:11336/85579instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:16:22.379CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations
title Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations
spellingShingle Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations
Silva, Luis O.
46E22
47A70
47B25
DE BRANGES SPACES
SCALE OF HILBERT SPACES
SINGULAR RANK-ONE PERTURBATIONS
V. BOLOTNIKOV
title_short Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations
title_full Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations
title_fullStr Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations
title_full_unstemmed Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations
title_sort Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations
dc.creator.none.fl_str_mv Silva, Luis O.
Toloza, Julio Hugo
author Silva, Luis O.
author_facet Silva, Luis O.
Toloza, Julio Hugo
author_role author
author2 Toloza, Julio Hugo
author2_role author
dc.subject.none.fl_str_mv 46E22
47A70
47B25
DE BRANGES SPACES
SCALE OF HILBERT SPACES
SINGULAR RANK-ONE PERTURBATIONS
V. BOLOTNIKOV
topic 46E22
47A70
47B25
DE BRANGES SPACES
SCALE OF HILBERT SPACES
SINGULAR RANK-ONE PERTURBATIONS
V. BOLOTNIKOV
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We derive a description of the family of canonical selfadjoint extensions of the operator of multiplication in a de Branges space in terms of singular rank-one perturbations using distinguished elements from the set of functions associated with a de Branges space. The scale of rigged Hilbert spaces associated with this construction is also studied from the viewpoint of de Branges's theory.
Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; México
Fil: Toloza, Julio Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
description We derive a description of the family of canonical selfadjoint extensions of the operator of multiplication in a de Branges space in terms of singular rank-one perturbations using distinguished elements from the set of functions associated with a de Branges space. The scale of rigged Hilbert spaces associated with this construction is also studied from the viewpoint of de Branges's theory.
publishDate 2019
dc.date.none.fl_str_mv 2019-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/85579
Silva, Luis O.; Toloza, Julio Hugo; Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations; Taylor & Francis; Complex Variables and Elliptic Equations; 64; 9; 9-2019; 1477-1499
1747-6933
CONICET Digital
CONICET
url http://hdl.handle.net/11336/85579
identifier_str_mv Silva, Luis O.; Toloza, Julio Hugo; Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations; Taylor & Francis; Complex Variables and Elliptic Equations; 64; 9; 9-2019; 1477-1499
1747-6933
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/17476933.2018.1536701
info:eu-repo/semantics/altIdentifier/doi/10.1080/17476933.2018.1536701
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1706.09400
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614107538391040
score 13.070432