Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations
- Autores
- Silva, Luis O.; Toloza, Julio Hugo
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We derive a description of the family of canonical selfadjoint extensions of the operator of multiplication in a de Branges space in terms of singular rank-one perturbations using distinguished elements from the set of functions associated with a de Branges space. The scale of rigged Hilbert spaces associated with this construction is also studied from the viewpoint of de Branges's theory.
Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; México
Fil: Toloza, Julio Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina - Materia
-
46E22
47A70
47B25
DE BRANGES SPACES
SCALE OF HILBERT SPACES
SINGULAR RANK-ONE PERTURBATIONS
V. BOLOTNIKOV - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/85579
Ver los metadatos del registro completo
id |
CONICETDig_5b6a4421a66739f6b3af0759e2b29ef0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/85579 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbationsSilva, Luis O.Toloza, Julio Hugo46E2247A7047B25DE BRANGES SPACESSCALE OF HILBERT SPACESSINGULAR RANK-ONE PERTURBATIONSV. BOLOTNIKOVhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We derive a description of the family of canonical selfadjoint extensions of the operator of multiplication in a de Branges space in terms of singular rank-one perturbations using distinguished elements from the set of functions associated with a de Branges space. The scale of rigged Hilbert spaces associated with this construction is also studied from the viewpoint of de Branges's theory.Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; MéxicoFil: Toloza, Julio Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaTaylor & Francis2019-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/85579Silva, Luis O.; Toloza, Julio Hugo; Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations; Taylor & Francis; Complex Variables and Elliptic Equations; 64; 9; 9-2019; 1477-14991747-6933CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/17476933.2018.1536701info:eu-repo/semantics/altIdentifier/doi/10.1080/17476933.2018.1536701info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1706.09400info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:16:22Zoai:ri.conicet.gov.ar:11336/85579instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:16:22.379CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations |
title |
Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations |
spellingShingle |
Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations Silva, Luis O. 46E22 47A70 47B25 DE BRANGES SPACES SCALE OF HILBERT SPACES SINGULAR RANK-ONE PERTURBATIONS V. BOLOTNIKOV |
title_short |
Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations |
title_full |
Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations |
title_fullStr |
Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations |
title_full_unstemmed |
Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations |
title_sort |
Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations |
dc.creator.none.fl_str_mv |
Silva, Luis O. Toloza, Julio Hugo |
author |
Silva, Luis O. |
author_facet |
Silva, Luis O. Toloza, Julio Hugo |
author_role |
author |
author2 |
Toloza, Julio Hugo |
author2_role |
author |
dc.subject.none.fl_str_mv |
46E22 47A70 47B25 DE BRANGES SPACES SCALE OF HILBERT SPACES SINGULAR RANK-ONE PERTURBATIONS V. BOLOTNIKOV |
topic |
46E22 47A70 47B25 DE BRANGES SPACES SCALE OF HILBERT SPACES SINGULAR RANK-ONE PERTURBATIONS V. BOLOTNIKOV |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We derive a description of the family of canonical selfadjoint extensions of the operator of multiplication in a de Branges space in terms of singular rank-one perturbations using distinguished elements from the set of functions associated with a de Branges space. The scale of rigged Hilbert spaces associated with this construction is also studied from the viewpoint of de Branges's theory. Fil: Silva, Luis O.. Universidad Nacional Autónoma de México; México Fil: Toloza, Julio Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina |
description |
We derive a description of the family of canonical selfadjoint extensions of the operator of multiplication in a de Branges space in terms of singular rank-one perturbations using distinguished elements from the set of functions associated with a de Branges space. The scale of rigged Hilbert spaces associated with this construction is also studied from the viewpoint of de Branges's theory. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/85579 Silva, Luis O.; Toloza, Julio Hugo; Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations; Taylor & Francis; Complex Variables and Elliptic Equations; 64; 9; 9-2019; 1477-1499 1747-6933 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/85579 |
identifier_str_mv |
Silva, Luis O.; Toloza, Julio Hugo; Selfadjoint extensions of the multiplication operator in de Branges spaces as singular rank-one perturbations; Taylor & Francis; Complex Variables and Elliptic Equations; 64; 9; 9-2019; 1477-1499 1747-6933 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/17476933.2018.1536701 info:eu-repo/semantics/altIdentifier/doi/10.1080/17476933.2018.1536701 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1706.09400 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614107538391040 |
score |
13.070432 |