Grassmann geometry of zero sets in reproducing kernel Hilbert spaces
- Autores
- Andruchow, Esteban; Chiumiento, Eduardo Hernan; Varela, Alejandro
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.
Let H be a reproducing kernel Hilbert space of functions on a set X. We study the problem of finding a minimal geodesic of the Grassmann manifold of H that joins two subspaces consisting of functions which vanish on given finite subsets of X. We establish a necessary and sufficient condition for existence and uniqueness of geodesics, and we then analyze it in examples. We discuss the relation of the geodesic distance with other known metrics when the mentioned finite subsets are singletons. We find estimates on the upper and lower eigenvalues of the unique self-adjoint operators which define the minimal geodesics, which can be made more precise when the underlying space is the Hardy space. Also for the Hardy space we discuss the existence of geodesics joining subspaces of functions vanishing on infinite subsets of the disk, and we investigate when the product of projections onto this type of subspaces is compact. - Fuente
- Journal of Mathematical Analysis and Applications. Ago. 2021; 500(1): 1-31
https://www.sciencedirect.com/journal/journal-of-mathematical-analysis-and-applications/vol/500/issue/1 - Materia
-
Analytic functions spaces
Geodesics
Grassmann manifold
Hardy space
Reproducing kernels
Zero sets - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad Nacional de General Sarmiento
- OAI Identificador
- oai:repositorio.ungs.edu.ar:UNGS/1820
Ver los metadatos del registro completo
id |
RIUNGS_34f772737dc29e22231f2b1bc8b0ae5f |
---|---|
oai_identifier_str |
oai:repositorio.ungs.edu.ar:UNGS/1820 |
network_acronym_str |
RIUNGS |
repository_id_str |
|
network_name_str |
Repositorio Institucional UNGS |
spelling |
Grassmann geometry of zero sets in reproducing kernel Hilbert spacesAndruchow, EstebanChiumiento, Eduardo HernanVarela, AlejandroAnalytic functions spacesGeodesicsGrassmann manifoldHardy spaceReproducing kernelsZero setsFil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina.Let H be a reproducing kernel Hilbert space of functions on a set X. We study the problem of finding a minimal geodesic of the Grassmann manifold of H that joins two subspaces consisting of functions which vanish on given finite subsets of X. We establish a necessary and sufficient condition for existence and uniqueness of geodesics, and we then analyze it in examples. We discuss the relation of the geodesic distance with other known metrics when the mentioned finite subsets are singletons. We find estimates on the upper and lower eigenvalues of the unique self-adjoint operators which define the minimal geodesics, which can be made more precise when the underlying space is the Hardy space. Also for the Hardy space we discuss the existence of geodesics joining subspaces of functions vanishing on infinite subsets of the disk, and we investigate when the product of projections onto this type of subspaces is compact.Academic Press Inc Elsevier Science2024-12-23T14:30:42Z2024-12-23T14:30:42Z2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfAndruchow, E., Chiumiento, E. y Varela, A. (2021). Grassmann geometry of zero sets in reproducing kernel Hilbert spaces. Journal of Mathematical Analysis and Applications, 500(1), 1-31.0022-247Xhttp://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1820Journal of Mathematical Analysis and Applications. Ago. 2021; 500(1): 1-31https://www.sciencedirect.com/journal/journal-of-mathematical-analysis-and-applications/vol/500/issue/1reponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenghttp://dx.doi.org/10.1016/j.jmaa.2021.125107info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2025-09-29T15:01:48Zoai:repositorio.ungs.edu.ar:UNGS/1820instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2025-09-29 15:01:48.36Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse |
dc.title.none.fl_str_mv |
Grassmann geometry of zero sets in reproducing kernel Hilbert spaces |
title |
Grassmann geometry of zero sets in reproducing kernel Hilbert spaces |
spellingShingle |
Grassmann geometry of zero sets in reproducing kernel Hilbert spaces Andruchow, Esteban Analytic functions spaces Geodesics Grassmann manifold Hardy space Reproducing kernels Zero sets |
title_short |
Grassmann geometry of zero sets in reproducing kernel Hilbert spaces |
title_full |
Grassmann geometry of zero sets in reproducing kernel Hilbert spaces |
title_fullStr |
Grassmann geometry of zero sets in reproducing kernel Hilbert spaces |
title_full_unstemmed |
Grassmann geometry of zero sets in reproducing kernel Hilbert spaces |
title_sort |
Grassmann geometry of zero sets in reproducing kernel Hilbert spaces |
dc.creator.none.fl_str_mv |
Andruchow, Esteban Chiumiento, Eduardo Hernan Varela, Alejandro |
author |
Andruchow, Esteban |
author_facet |
Andruchow, Esteban Chiumiento, Eduardo Hernan Varela, Alejandro |
author_role |
author |
author2 |
Chiumiento, Eduardo Hernan Varela, Alejandro |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Analytic functions spaces Geodesics Grassmann manifold Hardy space Reproducing kernels Zero sets |
topic |
Analytic functions spaces Geodesics Grassmann manifold Hardy space Reproducing kernels Zero sets |
dc.description.none.fl_txt_mv |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. Fil: Chiumiento, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática "Alberto P. Calderón"; Argentina. Let H be a reproducing kernel Hilbert space of functions on a set X. We study the problem of finding a minimal geodesic of the Grassmann manifold of H that joins two subspaces consisting of functions which vanish on given finite subsets of X. We establish a necessary and sufficient condition for existence and uniqueness of geodesics, and we then analyze it in examples. We discuss the relation of the geodesic distance with other known metrics when the mentioned finite subsets are singletons. We find estimates on the upper and lower eigenvalues of the unique self-adjoint operators which define the minimal geodesics, which can be made more precise when the underlying space is the Hardy space. Also for the Hardy space we discuss the existence of geodesics joining subspaces of functions vanishing on infinite subsets of the disk, and we investigate when the product of projections onto this type of subspaces is compact. |
description |
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2024-12-23T14:30:42Z 2024-12-23T14:30:42Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
Andruchow, E., Chiumiento, E. y Varela, A. (2021). Grassmann geometry of zero sets in reproducing kernel Hilbert spaces. Journal of Mathematical Analysis and Applications, 500(1), 1-31. 0022-247X http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1820 |
identifier_str_mv |
Andruchow, E., Chiumiento, E. y Varela, A. (2021). Grassmann geometry of zero sets in reproducing kernel Hilbert spaces. Journal of Mathematical Analysis and Applications, 500(1), 1-31. 0022-247X |
url |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/1820 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://dx.doi.org/10.1016/j.jmaa.2021.125107 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
Journal of Mathematical Analysis and Applications. Ago. 2021; 500(1): 1-31 https://www.sciencedirect.com/journal/journal-of-mathematical-analysis-and-applications/vol/500/issue/1 reponame:Repositorio Institucional UNGS instname:Universidad Nacional de General Sarmiento |
reponame_str |
Repositorio Institucional UNGS |
collection |
Repositorio Institucional UNGS |
instname_str |
Universidad Nacional de General Sarmiento |
repository.name.fl_str_mv |
Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento |
repository.mail.fl_str_mv |
ubyd@campus.ungs.edu.ar |
_version_ |
1844623307764137984 |
score |
12.559606 |