Zeros of Random Functions Generated with de Branges Kernels
- Autores
- Antezana, Jorge Abel; Marzo, Jordi; Olsen, Jan-Fredrik
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the point process given by the set of real zeros of random series generated with orthonormal bases of reproducing kernels of de Branges spaces. We find an explicit formula for the intensity function in terms of the phase of the Hermite?Biehler function generating the de Branges space. We prove that the intensity of the point process completely characterizes the underlying de Branges space.
Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina
Fil: Marzo, Jordi. Universidad de Barcelona; España
Fil: Olsen, Jan-Fredrik. Lund University; Suecia - Materia
-
GAUSSIAN ANALYTIC FUNCTIONS
DE BRANGES SPACES
FIRST INTENSITY FUNCTION
KAC-RICE FORMULA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/20214
Ver los metadatos del registro completo
id |
CONICETDig_a784f8d3bdb2771d04203874330ab72a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/20214 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Zeros of Random Functions Generated with de Branges KernelsAntezana, Jorge AbelMarzo, JordiOlsen, Jan-FredrikGAUSSIAN ANALYTIC FUNCTIONSDE BRANGES SPACESFIRST INTENSITY FUNCTIONKAC-RICE FORMULAhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the point process given by the set of real zeros of random series generated with orthonormal bases of reproducing kernels of de Branges spaces. We find an explicit formula for the intensity function in terms of the phase of the Hermite?Biehler function generating the de Branges space. We prove that the intensity of the point process completely characterizes the underlying de Branges space.Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; ArgentinaFil: Marzo, Jordi. Universidad de Barcelona; EspañaFil: Olsen, Jan-Fredrik. Lund University; SueciaOxford University Press2017-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20214Antezana, Jorge Abel; Marzo, Jordi; Olsen, Jan-Fredrik; Zeros of Random Functions Generated with de Branges Kernels; Oxford University Press; International Mathematics Research Notices; 2017; 8; 4-2017; 2284-22991073-7928CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-abstract/2017/8/2284/3060657/Zeros-of-Random-Functions-Generated-with-deinfo:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnw078info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:38Zoai:ri.conicet.gov.ar:11336/20214instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:38.783CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Zeros of Random Functions Generated with de Branges Kernels |
title |
Zeros of Random Functions Generated with de Branges Kernels |
spellingShingle |
Zeros of Random Functions Generated with de Branges Kernels Antezana, Jorge Abel GAUSSIAN ANALYTIC FUNCTIONS DE BRANGES SPACES FIRST INTENSITY FUNCTION KAC-RICE FORMULA |
title_short |
Zeros of Random Functions Generated with de Branges Kernels |
title_full |
Zeros of Random Functions Generated with de Branges Kernels |
title_fullStr |
Zeros of Random Functions Generated with de Branges Kernels |
title_full_unstemmed |
Zeros of Random Functions Generated with de Branges Kernels |
title_sort |
Zeros of Random Functions Generated with de Branges Kernels |
dc.creator.none.fl_str_mv |
Antezana, Jorge Abel Marzo, Jordi Olsen, Jan-Fredrik |
author |
Antezana, Jorge Abel |
author_facet |
Antezana, Jorge Abel Marzo, Jordi Olsen, Jan-Fredrik |
author_role |
author |
author2 |
Marzo, Jordi Olsen, Jan-Fredrik |
author2_role |
author author |
dc.subject.none.fl_str_mv |
GAUSSIAN ANALYTIC FUNCTIONS DE BRANGES SPACES FIRST INTENSITY FUNCTION KAC-RICE FORMULA |
topic |
GAUSSIAN ANALYTIC FUNCTIONS DE BRANGES SPACES FIRST INTENSITY FUNCTION KAC-RICE FORMULA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the point process given by the set of real zeros of random series generated with orthonormal bases of reproducing kernels of de Branges spaces. We find an explicit formula for the intensity function in terms of the phase of the Hermite?Biehler function generating the de Branges space. We prove that the intensity of the point process completely characterizes the underlying de Branges space. Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matematicas; Argentina Fil: Marzo, Jordi. Universidad de Barcelona; España Fil: Olsen, Jan-Fredrik. Lund University; Suecia |
description |
We study the point process given by the set of real zeros of random series generated with orthonormal bases of reproducing kernels of de Branges spaces. We find an explicit formula for the intensity function in terms of the phase of the Hermite?Biehler function generating the de Branges space. We prove that the intensity of the point process completely characterizes the underlying de Branges space. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/20214 Antezana, Jorge Abel; Marzo, Jordi; Olsen, Jan-Fredrik; Zeros of Random Functions Generated with de Branges Kernels; Oxford University Press; International Mathematics Research Notices; 2017; 8; 4-2017; 2284-2299 1073-7928 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/20214 |
identifier_str_mv |
Antezana, Jorge Abel; Marzo, Jordi; Olsen, Jan-Fredrik; Zeros of Random Functions Generated with de Branges Kernels; Oxford University Press; International Mathematics Research Notices; 2017; 8; 4-2017; 2284-2299 1073-7928 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-abstract/2017/8/2284/3060657/Zeros-of-Random-Functions-Generated-with-de info:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnw078 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613676647055360 |
score |
13.070432 |