A Brief Look at the Calderón and Hilbert Operators

Autores
Flores, Guillermo Javier
Año de publicación
2023
Idioma
inglés
Tipo de recurso
parte de libro
Estado
versión publicada
Descripción
The Calderón operator is the sum of the Hardy averaging operator and its adjoint, and plays an important role in the theory of real interpolation. On the other hand, the Hilbert operator arises from the continuous version of Hilbert’s inequality. Both operators appear in different contexts and have numerous applications within harmonic analysis. In this chapter we will briefly review the Calderón and Hilbert operators, showing some of the most relevant results within functional analysis and finally we will present recent results on these operators within Fourier analysis.
Fil: Flores, Guillermo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
CALDERON OPERATOR
HILBERT OPERATOR
LEBESGUE SPACES
LIPSCHITZ SPACES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/248307

id CONICETDig_43a667ab7ba113652868aabb0bb83b64
oai_identifier_str oai:ri.conicet.gov.ar:11336/248307
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Brief Look at the Calderón and Hilbert OperatorsFlores, Guillermo JavierCALDERON OPERATORHILBERT OPERATORLEBESGUE SPACESLIPSCHITZ SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The Calderón operator is the sum of the Hardy averaging operator and its adjoint, and plays an important role in the theory of real interpolation. On the other hand, the Hilbert operator arises from the continuous version of Hilbert’s inequality. Both operators appear in different contexts and have numerous applications within harmonic analysis. In this chapter we will briefly review the Calderón and Hilbert operators, showing some of the most relevant results within functional analysis and finally we will present recent results on these operators within Fourier analysis.Fil: Flores, Guillermo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaIntechOpenKhalil, Hammad2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookParthttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/248307Flores, Guillermo Javier; A Brief Look at the Calderón and Hilbert Operators; IntechOpen; 2023; 1-20978-1-80356-333-6CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.intechopen.com/books/functional-calculus-recent-advances-and-developmentinfo:eu-repo/semantics/altIdentifier/doi/10.5772/intechopen.106027info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:53:19Zoai:ri.conicet.gov.ar:11336/248307instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:53:20.018CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Brief Look at the Calderón and Hilbert Operators
title A Brief Look at the Calderón and Hilbert Operators
spellingShingle A Brief Look at the Calderón and Hilbert Operators
Flores, Guillermo Javier
CALDERON OPERATOR
HILBERT OPERATOR
LEBESGUE SPACES
LIPSCHITZ SPACES
title_short A Brief Look at the Calderón and Hilbert Operators
title_full A Brief Look at the Calderón and Hilbert Operators
title_fullStr A Brief Look at the Calderón and Hilbert Operators
title_full_unstemmed A Brief Look at the Calderón and Hilbert Operators
title_sort A Brief Look at the Calderón and Hilbert Operators
dc.creator.none.fl_str_mv Flores, Guillermo Javier
author Flores, Guillermo Javier
author_facet Flores, Guillermo Javier
author_role author
dc.contributor.none.fl_str_mv Khalil, Hammad
dc.subject.none.fl_str_mv CALDERON OPERATOR
HILBERT OPERATOR
LEBESGUE SPACES
LIPSCHITZ SPACES
topic CALDERON OPERATOR
HILBERT OPERATOR
LEBESGUE SPACES
LIPSCHITZ SPACES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The Calderón operator is the sum of the Hardy averaging operator and its adjoint, and plays an important role in the theory of real interpolation. On the other hand, the Hilbert operator arises from the continuous version of Hilbert’s inequality. Both operators appear in different contexts and have numerous applications within harmonic analysis. In this chapter we will briefly review the Calderón and Hilbert operators, showing some of the most relevant results within functional analysis and finally we will present recent results on these operators within Fourier analysis.
Fil: Flores, Guillermo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description The Calderón operator is the sum of the Hardy averaging operator and its adjoint, and plays an important role in the theory of real interpolation. On the other hand, the Hilbert operator arises from the continuous version of Hilbert’s inequality. Both operators appear in different contexts and have numerous applications within harmonic analysis. In this chapter we will briefly review the Calderón and Hilbert operators, showing some of the most relevant results within functional analysis and finally we will present recent results on these operators within Fourier analysis.
publishDate 2023
dc.date.none.fl_str_mv 2023
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/bookPart
http://purl.org/coar/resource_type/c_3248
info:ar-repo/semantics/parteDeLibro
status_str publishedVersion
format bookPart
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/248307
Flores, Guillermo Javier; A Brief Look at the Calderón and Hilbert Operators; IntechOpen; 2023; 1-20
978-1-80356-333-6
CONICET Digital
CONICET
url http://hdl.handle.net/11336/248307
identifier_str_mv Flores, Guillermo Javier; A Brief Look at the Calderón and Hilbert Operators; IntechOpen; 2023; 1-20
978-1-80356-333-6
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.intechopen.com/books/functional-calculus-recent-advances-and-development
info:eu-repo/semantics/altIdentifier/doi/10.5772/intechopen.106027
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IntechOpen
publisher.none.fl_str_mv IntechOpen
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613629947674624
score 13.070432