A Brief Look at the Calderón and Hilbert Operators
- Autores
- Flores, Guillermo Javier
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- parte de libro
- Estado
- versión publicada
- Descripción
- The Calderón operator is the sum of the Hardy averaging operator and its adjoint, and plays an important role in the theory of real interpolation. On the other hand, the Hilbert operator arises from the continuous version of Hilbert’s inequality. Both operators appear in different contexts and have numerous applications within harmonic analysis. In this chapter we will briefly review the Calderón and Hilbert operators, showing some of the most relevant results within functional analysis and finally we will present recent results on these operators within Fourier analysis.
Fil: Flores, Guillermo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
CALDERON OPERATOR
HILBERT OPERATOR
LEBESGUE SPACES
LIPSCHITZ SPACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/248307
Ver los metadatos del registro completo
id |
CONICETDig_43a667ab7ba113652868aabb0bb83b64 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/248307 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Brief Look at the Calderón and Hilbert OperatorsFlores, Guillermo JavierCALDERON OPERATORHILBERT OPERATORLEBESGUE SPACESLIPSCHITZ SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The Calderón operator is the sum of the Hardy averaging operator and its adjoint, and plays an important role in the theory of real interpolation. On the other hand, the Hilbert operator arises from the continuous version of Hilbert’s inequality. Both operators appear in different contexts and have numerous applications within harmonic analysis. In this chapter we will briefly review the Calderón and Hilbert operators, showing some of the most relevant results within functional analysis and finally we will present recent results on these operators within Fourier analysis.Fil: Flores, Guillermo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaIntechOpenKhalil, Hammad2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookParthttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/248307Flores, Guillermo Javier; A Brief Look at the Calderón and Hilbert Operators; IntechOpen; 2023; 1-20978-1-80356-333-6CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.intechopen.com/books/functional-calculus-recent-advances-and-developmentinfo:eu-repo/semantics/altIdentifier/doi/10.5772/intechopen.106027info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:53:19Zoai:ri.conicet.gov.ar:11336/248307instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:53:20.018CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Brief Look at the Calderón and Hilbert Operators |
title |
A Brief Look at the Calderón and Hilbert Operators |
spellingShingle |
A Brief Look at the Calderón and Hilbert Operators Flores, Guillermo Javier CALDERON OPERATOR HILBERT OPERATOR LEBESGUE SPACES LIPSCHITZ SPACES |
title_short |
A Brief Look at the Calderón and Hilbert Operators |
title_full |
A Brief Look at the Calderón and Hilbert Operators |
title_fullStr |
A Brief Look at the Calderón and Hilbert Operators |
title_full_unstemmed |
A Brief Look at the Calderón and Hilbert Operators |
title_sort |
A Brief Look at the Calderón and Hilbert Operators |
dc.creator.none.fl_str_mv |
Flores, Guillermo Javier |
author |
Flores, Guillermo Javier |
author_facet |
Flores, Guillermo Javier |
author_role |
author |
dc.contributor.none.fl_str_mv |
Khalil, Hammad |
dc.subject.none.fl_str_mv |
CALDERON OPERATOR HILBERT OPERATOR LEBESGUE SPACES LIPSCHITZ SPACES |
topic |
CALDERON OPERATOR HILBERT OPERATOR LEBESGUE SPACES LIPSCHITZ SPACES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The Calderón operator is the sum of the Hardy averaging operator and its adjoint, and plays an important role in the theory of real interpolation. On the other hand, the Hilbert operator arises from the continuous version of Hilbert’s inequality. Both operators appear in different contexts and have numerous applications within harmonic analysis. In this chapter we will briefly review the Calderón and Hilbert operators, showing some of the most relevant results within functional analysis and finally we will present recent results on these operators within Fourier analysis. Fil: Flores, Guillermo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
The Calderón operator is the sum of the Hardy averaging operator and its adjoint, and plays an important role in the theory of real interpolation. On the other hand, the Hilbert operator arises from the continuous version of Hilbert’s inequality. Both operators appear in different contexts and have numerous applications within harmonic analysis. In this chapter we will briefly review the Calderón and Hilbert operators, showing some of the most relevant results within functional analysis and finally we will present recent results on these operators within Fourier analysis. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/bookPart http://purl.org/coar/resource_type/c_3248 info:ar-repo/semantics/parteDeLibro |
status_str |
publishedVersion |
format |
bookPart |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/248307 Flores, Guillermo Javier; A Brief Look at the Calderón and Hilbert Operators; IntechOpen; 2023; 1-20 978-1-80356-333-6 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/248307 |
identifier_str_mv |
Flores, Guillermo Javier; A Brief Look at the Calderón and Hilbert Operators; IntechOpen; 2023; 1-20 978-1-80356-333-6 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.intechopen.com/books/functional-calculus-recent-advances-and-development info:eu-repo/semantics/altIdentifier/doi/10.5772/intechopen.106027 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IntechOpen |
publisher.none.fl_str_mv |
IntechOpen |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613629947674624 |
score |
13.070432 |