Worldline approach for spinor fields in manifolds with boundaries
- Autores
- Manzo, Lucas
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The worldline formalism is a useful scheme in Quantum Field Theory which has also become a powerful tool for numerical computations. It is based on the first quantisation of a point-particle whose transition amplitudes correspond to the heat-kernel of the operator of quantum fluctuations of the field theory. However, to study a quantum field theory in a bounded manifold one needs to restrict the path integration domain of the point-particle to a specific subset of worldlines enclosed by those boundaries. In the present article it is shown how to implement this restriction for the case of a spinor field in a two-dimensional curved half-plane under MIT bag boundary conditions, and compute the first few heat-kernel coefficients as a verification of the proposed construction. This construction admits several generalisations.
Fil: Manzo, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina - Materia
-
Anomalies in Field and String Theories
Differential and Algebraic Geometry
Spacetime Singularities
Sigma Models - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/265671
Ver los metadatos del registro completo
id |
CONICETDig_42f9439dc6a608d0dbd2c999aa0b85bd |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/265671 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Worldline approach for spinor fields in manifolds with boundariesManzo, LucasAnomalies in Field and String TheoriesDifferential and Algebraic GeometrySpacetime SingularitiesSigma Modelshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The worldline formalism is a useful scheme in Quantum Field Theory which has also become a powerful tool for numerical computations. It is based on the first quantisation of a point-particle whose transition amplitudes correspond to the heat-kernel of the operator of quantum fluctuations of the field theory. However, to study a quantum field theory in a bounded manifold one needs to restrict the path integration domain of the point-particle to a specific subset of worldlines enclosed by those boundaries. In the present article it is shown how to implement this restriction for the case of a spinor field in a two-dimensional curved half-plane under MIT bag boundary conditions, and compute the first few heat-kernel coefficients as a verification of the proposed construction. This construction admits several generalisations.Fil: Manzo, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaSpringer2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265671Manzo, Lucas; Worldline approach for spinor fields in manifolds with boundaries; Springer; Journal of High Energy Physics; 2024; 6; 6-2024; 1-331029-8479CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/JHEP06(2024)144info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP06(2024)144info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:17Zoai:ri.conicet.gov.ar:11336/265671instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:18.241CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Worldline approach for spinor fields in manifolds with boundaries |
title |
Worldline approach for spinor fields in manifolds with boundaries |
spellingShingle |
Worldline approach for spinor fields in manifolds with boundaries Manzo, Lucas Anomalies in Field and String Theories Differential and Algebraic Geometry Spacetime Singularities Sigma Models |
title_short |
Worldline approach for spinor fields in manifolds with boundaries |
title_full |
Worldline approach for spinor fields in manifolds with boundaries |
title_fullStr |
Worldline approach for spinor fields in manifolds with boundaries |
title_full_unstemmed |
Worldline approach for spinor fields in manifolds with boundaries |
title_sort |
Worldline approach for spinor fields in manifolds with boundaries |
dc.creator.none.fl_str_mv |
Manzo, Lucas |
author |
Manzo, Lucas |
author_facet |
Manzo, Lucas |
author_role |
author |
dc.subject.none.fl_str_mv |
Anomalies in Field and String Theories Differential and Algebraic Geometry Spacetime Singularities Sigma Models |
topic |
Anomalies in Field and String Theories Differential and Algebraic Geometry Spacetime Singularities Sigma Models |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The worldline formalism is a useful scheme in Quantum Field Theory which has also become a powerful tool for numerical computations. It is based on the first quantisation of a point-particle whose transition amplitudes correspond to the heat-kernel of the operator of quantum fluctuations of the field theory. However, to study a quantum field theory in a bounded manifold one needs to restrict the path integration domain of the point-particle to a specific subset of worldlines enclosed by those boundaries. In the present article it is shown how to implement this restriction for the case of a spinor field in a two-dimensional curved half-plane under MIT bag boundary conditions, and compute the first few heat-kernel coefficients as a verification of the proposed construction. This construction admits several generalisations. Fil: Manzo, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina |
description |
The worldline formalism is a useful scheme in Quantum Field Theory which has also become a powerful tool for numerical computations. It is based on the first quantisation of a point-particle whose transition amplitudes correspond to the heat-kernel of the operator of quantum fluctuations of the field theory. However, to study a quantum field theory in a bounded manifold one needs to restrict the path integration domain of the point-particle to a specific subset of worldlines enclosed by those boundaries. In the present article it is shown how to implement this restriction for the case of a spinor field in a two-dimensional curved half-plane under MIT bag boundary conditions, and compute the first few heat-kernel coefficients as a verification of the proposed construction. This construction admits several generalisations. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/265671 Manzo, Lucas; Worldline approach for spinor fields in manifolds with boundaries; Springer; Journal of High Energy Physics; 2024; 6; 6-2024; 1-33 1029-8479 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/265671 |
identifier_str_mv |
Manzo, Lucas; Worldline approach for spinor fields in manifolds with boundaries; Springer; Journal of High Energy Physics; 2024; 6; 6-2024; 1-33 1029-8479 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/JHEP06(2024)144 info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP06(2024)144 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270075219869696 |
score |
13.13397 |