Worldline approach for spinor fields in manifolds with boundaries

Autores
Manzo, Lucas
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The worldline formalism is a useful scheme in Quantum Field Theory which has also become a powerful tool for numerical computations. It is based on the first quantisation of a point-particle whose transition amplitudes correspond to the heat-kernel of the operator of quantum fluctuations of the field theory. However, to study a quantum field theory in a bounded manifold one needs to restrict the path integration domain of the point-particle to a specific subset of worldlines enclosed by those boundaries. In the present article it is shown how to implement this restriction for the case of a spinor field in a two-dimensional curved half-plane under MIT bag boundary conditions, and compute the first few heat-kernel coefficients as a verification of the proposed construction. This construction admits several generalisations.
Fil: Manzo, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Materia
Anomalies in Field and String Theories
Differential and Algebraic Geometry
Spacetime Singularities
Sigma Models
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/265671

id CONICETDig_42f9439dc6a608d0dbd2c999aa0b85bd
oai_identifier_str oai:ri.conicet.gov.ar:11336/265671
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Worldline approach for spinor fields in manifolds with boundariesManzo, LucasAnomalies in Field and String TheoriesDifferential and Algebraic GeometrySpacetime SingularitiesSigma Modelshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The worldline formalism is a useful scheme in Quantum Field Theory which has also become a powerful tool for numerical computations. It is based on the first quantisation of a point-particle whose transition amplitudes correspond to the heat-kernel of the operator of quantum fluctuations of the field theory. However, to study a quantum field theory in a bounded manifold one needs to restrict the path integration domain of the point-particle to a specific subset of worldlines enclosed by those boundaries. In the present article it is shown how to implement this restriction for the case of a spinor field in a two-dimensional curved half-plane under MIT bag boundary conditions, and compute the first few heat-kernel coefficients as a verification of the proposed construction. This construction admits several generalisations.Fil: Manzo, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaSpringer2024-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265671Manzo, Lucas; Worldline approach for spinor fields in manifolds with boundaries; Springer; Journal of High Energy Physics; 2024; 6; 6-2024; 1-331029-8479CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/JHEP06(2024)144info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP06(2024)144info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:17Zoai:ri.conicet.gov.ar:11336/265671instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:18.241CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Worldline approach for spinor fields in manifolds with boundaries
title Worldline approach for spinor fields in manifolds with boundaries
spellingShingle Worldline approach for spinor fields in manifolds with boundaries
Manzo, Lucas
Anomalies in Field and String Theories
Differential and Algebraic Geometry
Spacetime Singularities
Sigma Models
title_short Worldline approach for spinor fields in manifolds with boundaries
title_full Worldline approach for spinor fields in manifolds with boundaries
title_fullStr Worldline approach for spinor fields in manifolds with boundaries
title_full_unstemmed Worldline approach for spinor fields in manifolds with boundaries
title_sort Worldline approach for spinor fields in manifolds with boundaries
dc.creator.none.fl_str_mv Manzo, Lucas
author Manzo, Lucas
author_facet Manzo, Lucas
author_role author
dc.subject.none.fl_str_mv Anomalies in Field and String Theories
Differential and Algebraic Geometry
Spacetime Singularities
Sigma Models
topic Anomalies in Field and String Theories
Differential and Algebraic Geometry
Spacetime Singularities
Sigma Models
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The worldline formalism is a useful scheme in Quantum Field Theory which has also become a powerful tool for numerical computations. It is based on the first quantisation of a point-particle whose transition amplitudes correspond to the heat-kernel of the operator of quantum fluctuations of the field theory. However, to study a quantum field theory in a bounded manifold one needs to restrict the path integration domain of the point-particle to a specific subset of worldlines enclosed by those boundaries. In the present article it is shown how to implement this restriction for the case of a spinor field in a two-dimensional curved half-plane under MIT bag boundary conditions, and compute the first few heat-kernel coefficients as a verification of the proposed construction. This construction admits several generalisations.
Fil: Manzo, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
description The worldline formalism is a useful scheme in Quantum Field Theory which has also become a powerful tool for numerical computations. It is based on the first quantisation of a point-particle whose transition amplitudes correspond to the heat-kernel of the operator of quantum fluctuations of the field theory. However, to study a quantum field theory in a bounded manifold one needs to restrict the path integration domain of the point-particle to a specific subset of worldlines enclosed by those boundaries. In the present article it is shown how to implement this restriction for the case of a spinor field in a two-dimensional curved half-plane under MIT bag boundary conditions, and compute the first few heat-kernel coefficients as a verification of the proposed construction. This construction admits several generalisations.
publishDate 2024
dc.date.none.fl_str_mv 2024-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/265671
Manzo, Lucas; Worldline approach for spinor fields in manifolds with boundaries; Springer; Journal of High Energy Physics; 2024; 6; 6-2024; 1-33
1029-8479
CONICET Digital
CONICET
url http://hdl.handle.net/11336/265671
identifier_str_mv Manzo, Lucas; Worldline approach for spinor fields in manifolds with boundaries; Springer; Journal of High Energy Physics; 2024; 6; 6-2024; 1-33
1029-8479
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/JHEP06(2024)144
info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP06(2024)144
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270075219869696
score 13.13397