T-duality on nilmanifolds
- Autores
- del Barco, Viviana Jorgelina; Grama, Lino; Soriani, Leonardo
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study generalized complex structures and T-duality (in the sense of Bouwknegt, Evslin, Hannabuss and Mathai) on Lie algebras and construct the corresponding Cavalcanti and Gualtieri map. Such a construction is called Infinitesimal T -duality. As an application we deal with the problem of finding symplectic structures on 2-step nilpotent Lie algebras. We also give a criteria for the integrability of the infinitesimal T-duality of Lie algebras to topological T-duality of the associated nilmanifolds.
Fil: del Barco, Viviana Jorgelina. Universidade Estadual de Campinas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario; Argentina
Fil: Grama, Lino. Universidade Estadual de Campinas; Brasil
Fil: Soriani, Leonardo. Universidade Estadual de Campinas; Brasil - Materia
-
D-BRANES
DIFFERENTIAL AND ALGEBRAIC GEOMETRY
GLOBAL SYMMETRIES
STRING DUALITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/92678
Ver los metadatos del registro completo
id |
CONICETDig_c4878ded55567d0c362163cb311bcc79 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/92678 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
T-duality on nilmanifoldsdel Barco, Viviana JorgelinaGrama, LinoSoriani, LeonardoD-BRANESDIFFERENTIAL AND ALGEBRAIC GEOMETRYGLOBAL SYMMETRIESSTRING DUALITYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study generalized complex structures and T-duality (in the sense of Bouwknegt, Evslin, Hannabuss and Mathai) on Lie algebras and construct the corresponding Cavalcanti and Gualtieri map. Such a construction is called Infinitesimal T -duality. As an application we deal with the problem of finding symplectic structures on 2-step nilpotent Lie algebras. We also give a criteria for the integrability of the infinitesimal T-duality of Lie algebras to topological T-duality of the associated nilmanifolds.Fil: del Barco, Viviana Jorgelina. Universidade Estadual de Campinas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario; ArgentinaFil: Grama, Lino. Universidade Estadual de Campinas; BrasilFil: Soriani, Leonardo. Universidade Estadual de Campinas; BrasilSpringer2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/92678del Barco, Viviana Jorgelina; Grama, Lino; Soriani, Leonardo; T-duality on nilmanifolds; Springer; Journal of High Energy Physics; 2018; 5; 5-2018; 1-251126-67081029-8479CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP05(2018)153info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FJHEP05%282018%29153info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:14:07Zoai:ri.conicet.gov.ar:11336/92678instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:14:07.682CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
T-duality on nilmanifolds |
title |
T-duality on nilmanifolds |
spellingShingle |
T-duality on nilmanifolds del Barco, Viviana Jorgelina D-BRANES DIFFERENTIAL AND ALGEBRAIC GEOMETRY GLOBAL SYMMETRIES STRING DUALITY |
title_short |
T-duality on nilmanifolds |
title_full |
T-duality on nilmanifolds |
title_fullStr |
T-duality on nilmanifolds |
title_full_unstemmed |
T-duality on nilmanifolds |
title_sort |
T-duality on nilmanifolds |
dc.creator.none.fl_str_mv |
del Barco, Viviana Jorgelina Grama, Lino Soriani, Leonardo |
author |
del Barco, Viviana Jorgelina |
author_facet |
del Barco, Viviana Jorgelina Grama, Lino Soriani, Leonardo |
author_role |
author |
author2 |
Grama, Lino Soriani, Leonardo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
D-BRANES DIFFERENTIAL AND ALGEBRAIC GEOMETRY GLOBAL SYMMETRIES STRING DUALITY |
topic |
D-BRANES DIFFERENTIAL AND ALGEBRAIC GEOMETRY GLOBAL SYMMETRIES STRING DUALITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study generalized complex structures and T-duality (in the sense of Bouwknegt, Evslin, Hannabuss and Mathai) on Lie algebras and construct the corresponding Cavalcanti and Gualtieri map. Such a construction is called Infinitesimal T -duality. As an application we deal with the problem of finding symplectic structures on 2-step nilpotent Lie algebras. We also give a criteria for the integrability of the infinitesimal T-duality of Lie algebras to topological T-duality of the associated nilmanifolds. Fil: del Barco, Viviana Jorgelina. Universidade Estadual de Campinas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario; Argentina Fil: Grama, Lino. Universidade Estadual de Campinas; Brasil Fil: Soriani, Leonardo. Universidade Estadual de Campinas; Brasil |
description |
We study generalized complex structures and T-duality (in the sense of Bouwknegt, Evslin, Hannabuss and Mathai) on Lie algebras and construct the corresponding Cavalcanti and Gualtieri map. Such a construction is called Infinitesimal T -duality. As an application we deal with the problem of finding symplectic structures on 2-step nilpotent Lie algebras. We also give a criteria for the integrability of the infinitesimal T-duality of Lie algebras to topological T-duality of the associated nilmanifolds. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/92678 del Barco, Viviana Jorgelina; Grama, Lino; Soriani, Leonardo; T-duality on nilmanifolds; Springer; Journal of High Energy Physics; 2018; 5; 5-2018; 1-25 1126-6708 1029-8479 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/92678 |
identifier_str_mv |
del Barco, Viviana Jorgelina; Grama, Lino; Soriani, Leonardo; T-duality on nilmanifolds; Springer; Journal of High Energy Physics; 2018; 5; 5-2018; 1-25 1126-6708 1029-8479 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP05(2018)153 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FJHEP05%282018%29153 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980752315121664 |
score |
12.993085 |