T-duality on nilmanifolds
- Autores
 - del Barco, Viviana Jorgelina; Grama, Lino; Soriani, Leonardo
 - Año de publicación
 - 2018
 - Idioma
 - inglés
 - Tipo de recurso
 - artículo
 - Estado
 - versión publicada
 - Descripción
 - We study generalized complex structures and T-duality (in the sense of Bouwknegt, Evslin, Hannabuss and Mathai) on Lie algebras and construct the corresponding Cavalcanti and Gualtieri map. Such a construction is called Infinitesimal T -duality. As an application we deal with the problem of finding symplectic structures on 2-step nilpotent Lie algebras. We also give a criteria for the integrability of the infinitesimal T-duality of Lie algebras to topological T-duality of the associated nilmanifolds.
Fil: del Barco, Viviana Jorgelina. Universidade Estadual de Campinas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario; Argentina
Fil: Grama, Lino. Universidade Estadual de Campinas; Brasil
Fil: Soriani, Leonardo. Universidade Estadual de Campinas; Brasil - Materia
 - 
            
        D-BRANES
DIFFERENTIAL AND ALGEBRAIC GEOMETRY
GLOBAL SYMMETRIES
STRING DUALITY - Nivel de accesibilidad
 - acceso abierto
 - Condiciones de uso
 - https://creativecommons.org/licenses/by/2.5/ar/
 - Repositorio
 .jpg)
- Institución
 - Consejo Nacional de Investigaciones Científicas y Técnicas
 - OAI Identificador
 - oai:ri.conicet.gov.ar:11336/92678
 
Ver los metadatos del registro completo
| id | 
                                CONICETDig_c4878ded55567d0c362163cb311bcc79 | 
      
|---|---|
| oai_identifier_str | 
                                oai:ri.conicet.gov.ar:11336/92678 | 
      
| network_acronym_str | 
                                CONICETDig | 
      
| repository_id_str | 
                                3498 | 
      
| network_name_str | 
                                CONICET Digital (CONICET) | 
      
| spelling | 
                                T-duality on nilmanifoldsdel Barco, Viviana JorgelinaGrama, LinoSoriani, LeonardoD-BRANESDIFFERENTIAL AND ALGEBRAIC GEOMETRYGLOBAL SYMMETRIESSTRING DUALITYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study generalized complex structures and T-duality (in the sense of Bouwknegt, Evslin, Hannabuss and Mathai) on Lie algebras and construct the corresponding Cavalcanti and Gualtieri map. Such a construction is called Infinitesimal T -duality. As an application we deal with the problem of finding symplectic structures on 2-step nilpotent Lie algebras. We also give a criteria for the integrability of the infinitesimal T-duality of Lie algebras to topological T-duality of the associated nilmanifolds.Fil: del Barco, Viviana Jorgelina. Universidade Estadual de Campinas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario; ArgentinaFil: Grama, Lino. Universidade Estadual de Campinas; BrasilFil: Soriani, Leonardo. Universidade Estadual de Campinas; BrasilSpringer2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/92678del Barco, Viviana Jorgelina; Grama, Lino; Soriani, Leonardo; T-duality on nilmanifolds; Springer; Journal of High Energy Physics; 2018; 5; 5-2018; 1-251126-67081029-8479CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP05(2018)153info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FJHEP05%282018%29153info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:11:25Zoai:ri.conicet.gov.ar:11336/92678instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:11:25.588CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse | 
      
| dc.title.none.fl_str_mv | 
                                T-duality on nilmanifolds | 
      
| title | 
                                T-duality on nilmanifolds | 
      
| spellingShingle | 
                                T-duality on nilmanifolds del Barco, Viviana Jorgelina D-BRANES DIFFERENTIAL AND ALGEBRAIC GEOMETRY GLOBAL SYMMETRIES STRING DUALITY  | 
      
| title_short | 
                                T-duality on nilmanifolds | 
      
| title_full | 
                                T-duality on nilmanifolds | 
      
| title_fullStr | 
                                T-duality on nilmanifolds | 
      
| title_full_unstemmed | 
                                T-duality on nilmanifolds | 
      
| title_sort | 
                                T-duality on nilmanifolds | 
      
| dc.creator.none.fl_str_mv | 
                                del Barco, Viviana Jorgelina Grama, Lino Soriani, Leonardo  | 
      
| author | 
                                del Barco, Viviana Jorgelina | 
      
| author_facet | 
                                del Barco, Viviana Jorgelina Grama, Lino Soriani, Leonardo  | 
      
| author_role | 
                                author | 
      
| author2 | 
                                Grama, Lino Soriani, Leonardo  | 
      
| author2_role | 
                                author author  | 
      
| dc.subject.none.fl_str_mv | 
                                D-BRANES DIFFERENTIAL AND ALGEBRAIC GEOMETRY GLOBAL SYMMETRIES STRING DUALITY  | 
      
| topic | 
                                D-BRANES DIFFERENTIAL AND ALGEBRAIC GEOMETRY GLOBAL SYMMETRIES STRING DUALITY  | 
      
| purl_subject.fl_str_mv | 
                                https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1  | 
      
| dc.description.none.fl_txt_mv | 
                                We study generalized complex structures and T-duality (in the sense of Bouwknegt, Evslin, Hannabuss and Mathai) on Lie algebras and construct the corresponding Cavalcanti and Gualtieri map. Such a construction is called Infinitesimal T -duality. As an application we deal with the problem of finding symplectic structures on 2-step nilpotent Lie algebras. We also give a criteria for the integrability of the infinitesimal T-duality of Lie algebras to topological T-duality of the associated nilmanifolds. Fil: del Barco, Viviana Jorgelina. Universidade Estadual de Campinas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario; Argentina Fil: Grama, Lino. Universidade Estadual de Campinas; Brasil Fil: Soriani, Leonardo. Universidade Estadual de Campinas; Brasil  | 
      
| description | 
                                We study generalized complex structures and T-duality (in the sense of Bouwknegt, Evslin, Hannabuss and Mathai) on Lie algebras and construct the corresponding Cavalcanti and Gualtieri map. Such a construction is called Infinitesimal T -duality. As an application we deal with the problem of finding symplectic structures on 2-step nilpotent Lie algebras. We also give a criteria for the integrability of the infinitesimal T-duality of Lie algebras to topological T-duality of the associated nilmanifolds. | 
      
| publishDate | 
                                2018 | 
      
| dc.date.none.fl_str_mv | 
                                2018-05 | 
      
| dc.type.none.fl_str_mv | 
                                info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo  | 
      
| format | 
                                article | 
      
| status_str | 
                                publishedVersion | 
      
| dc.identifier.none.fl_str_mv | 
                                http://hdl.handle.net/11336/92678 del Barco, Viviana Jorgelina; Grama, Lino; Soriani, Leonardo; T-duality on nilmanifolds; Springer; Journal of High Energy Physics; 2018; 5; 5-2018; 1-25 1126-6708 1029-8479 CONICET Digital CONICET  | 
      
| url | 
                                http://hdl.handle.net/11336/92678 | 
      
| identifier_str_mv | 
                                del Barco, Viviana Jorgelina; Grama, Lino; Soriani, Leonardo; T-duality on nilmanifolds; Springer; Journal of High Energy Physics; 2018; 5; 5-2018; 1-25 1126-6708 1029-8479 CONICET Digital CONICET  | 
      
| dc.language.none.fl_str_mv | 
                                eng | 
      
| language | 
                                eng | 
      
| dc.relation.none.fl_str_mv | 
                                info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP05(2018)153 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FJHEP05%282018%29153  | 
      
| dc.rights.none.fl_str_mv | 
                                info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/  | 
      
| eu_rights_str_mv | 
                                openAccess | 
      
| rights_invalid_str_mv | 
                                https://creativecommons.org/licenses/by/2.5/ar/ | 
      
| dc.format.none.fl_str_mv | 
                                application/pdf application/pdf application/pdf  | 
      
| dc.publisher.none.fl_str_mv | 
                                Springer | 
      
| publisher.none.fl_str_mv | 
                                Springer | 
      
| dc.source.none.fl_str_mv | 
                                reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas  | 
      
| reponame_str | 
                                CONICET Digital (CONICET) | 
      
| collection | 
                                CONICET Digital (CONICET) | 
      
| instname_str | 
                                Consejo Nacional de Investigaciones Científicas y Técnicas | 
      
| repository.name.fl_str_mv | 
                                CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas | 
      
| repository.mail.fl_str_mv | 
                                dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar | 
      
| _version_ | 
                                1847426952103723008 | 
      
| score | 
                                13.10058 |