T-duality on nilmanifolds

Autores
del Barco, Viviana Jorgelina; Grama, Lino; Soriani, Leonardo
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study generalized complex structures and T-duality (in the sense of Bouwknegt, Evslin, Hannabuss and Mathai) on Lie algebras and construct the corresponding Cavalcanti and Gualtieri map. Such a construction is called Infinitesimal T -duality. As an application we deal with the problem of finding symplectic structures on 2-step nilpotent Lie algebras. We also give a criteria for the integrability of the infinitesimal T-duality of Lie algebras to topological T-duality of the associated nilmanifolds.
Fil: del Barco, Viviana Jorgelina. Universidade Estadual de Campinas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario; Argentina
Fil: Grama, Lino. Universidade Estadual de Campinas; Brasil
Fil: Soriani, Leonardo. Universidade Estadual de Campinas; Brasil
Materia
D-BRANES
DIFFERENTIAL AND ALGEBRAIC GEOMETRY
GLOBAL SYMMETRIES
STRING DUALITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/92678

id CONICETDig_c4878ded55567d0c362163cb311bcc79
oai_identifier_str oai:ri.conicet.gov.ar:11336/92678
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling T-duality on nilmanifoldsdel Barco, Viviana JorgelinaGrama, LinoSoriani, LeonardoD-BRANESDIFFERENTIAL AND ALGEBRAIC GEOMETRYGLOBAL SYMMETRIESSTRING DUALITYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study generalized complex structures and T-duality (in the sense of Bouwknegt, Evslin, Hannabuss and Mathai) on Lie algebras and construct the corresponding Cavalcanti and Gualtieri map. Such a construction is called Infinitesimal T -duality. As an application we deal with the problem of finding symplectic structures on 2-step nilpotent Lie algebras. We also give a criteria for the integrability of the infinitesimal T-duality of Lie algebras to topological T-duality of the associated nilmanifolds.Fil: del Barco, Viviana Jorgelina. Universidade Estadual de Campinas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario; ArgentinaFil: Grama, Lino. Universidade Estadual de Campinas; BrasilFil: Soriani, Leonardo. Universidade Estadual de Campinas; BrasilSpringer2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/92678del Barco, Viviana Jorgelina; Grama, Lino; Soriani, Leonardo; T-duality on nilmanifolds; Springer; Journal of High Energy Physics; 2018; 5; 5-2018; 1-251126-67081029-8479CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP05(2018)153info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FJHEP05%282018%29153info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:14:07Zoai:ri.conicet.gov.ar:11336/92678instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:14:07.682CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv T-duality on nilmanifolds
title T-duality on nilmanifolds
spellingShingle T-duality on nilmanifolds
del Barco, Viviana Jorgelina
D-BRANES
DIFFERENTIAL AND ALGEBRAIC GEOMETRY
GLOBAL SYMMETRIES
STRING DUALITY
title_short T-duality on nilmanifolds
title_full T-duality on nilmanifolds
title_fullStr T-duality on nilmanifolds
title_full_unstemmed T-duality on nilmanifolds
title_sort T-duality on nilmanifolds
dc.creator.none.fl_str_mv del Barco, Viviana Jorgelina
Grama, Lino
Soriani, Leonardo
author del Barco, Viviana Jorgelina
author_facet del Barco, Viviana Jorgelina
Grama, Lino
Soriani, Leonardo
author_role author
author2 Grama, Lino
Soriani, Leonardo
author2_role author
author
dc.subject.none.fl_str_mv D-BRANES
DIFFERENTIAL AND ALGEBRAIC GEOMETRY
GLOBAL SYMMETRIES
STRING DUALITY
topic D-BRANES
DIFFERENTIAL AND ALGEBRAIC GEOMETRY
GLOBAL SYMMETRIES
STRING DUALITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study generalized complex structures and T-duality (in the sense of Bouwknegt, Evslin, Hannabuss and Mathai) on Lie algebras and construct the corresponding Cavalcanti and Gualtieri map. Such a construction is called Infinitesimal T -duality. As an application we deal with the problem of finding symplectic structures on 2-step nilpotent Lie algebras. We also give a criteria for the integrability of the infinitesimal T-duality of Lie algebras to topological T-duality of the associated nilmanifolds.
Fil: del Barco, Viviana Jorgelina. Universidade Estadual de Campinas; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario; Argentina
Fil: Grama, Lino. Universidade Estadual de Campinas; Brasil
Fil: Soriani, Leonardo. Universidade Estadual de Campinas; Brasil
description We study generalized complex structures and T-duality (in the sense of Bouwknegt, Evslin, Hannabuss and Mathai) on Lie algebras and construct the corresponding Cavalcanti and Gualtieri map. Such a construction is called Infinitesimal T -duality. As an application we deal with the problem of finding symplectic structures on 2-step nilpotent Lie algebras. We also give a criteria for the integrability of the infinitesimal T-duality of Lie algebras to topological T-duality of the associated nilmanifolds.
publishDate 2018
dc.date.none.fl_str_mv 2018-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/92678
del Barco, Viviana Jorgelina; Grama, Lino; Soriani, Leonardo; T-duality on nilmanifolds; Springer; Journal of High Energy Physics; 2018; 5; 5-2018; 1-25
1126-6708
1029-8479
CONICET Digital
CONICET
url http://hdl.handle.net/11336/92678
identifier_str_mv del Barco, Viviana Jorgelina; Grama, Lino; Soriani, Leonardo; T-duality on nilmanifolds; Springer; Journal of High Energy Physics; 2018; 5; 5-2018; 1-25
1126-6708
1029-8479
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP05(2018)153
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FJHEP05%282018%29153
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980752315121664
score 12.993085