Scalar heat kernel with boundary in the worldline formalism

Autores
Bastianelli, Fiorenzo; Corradini, Olindo; González Pisani, Pablo Andrés; Schubert, Christian
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The worldline formalism has in recent years emerged as a powerful tool for the computation of effective actions and heat kernels. However, implementing nontrivial boundary conditions in this formalism has turned out to be a difficult problem. Recently, such a generalization was developed for the case of a scalar field on the half-space ℝ+ × ℝD-1, based on an extension of the associated worldline path integral to the full ℝD using image charges. We present here an improved version of this formalism which allows us to write down non-recursive master formulas for the n-point contribution to the heat kernel trace of a scalar field on the half-space with Dirichlet or Neumann boundary conditions. These master formulas are suitable to computerization. We demonstrate the efficiency of the formalism by a calculation of two new heat-kernel coefficients for the half-space, a4 and a9/2.
Facultad de Ciencias Exactas
Instituto de Física La Plata
Materia
Ciencias Exactas
Física
Field theories in higher dimensions
Field theories in lower dimensions
Sigma models
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/84238

id SEDICI_af270cf0cbc59e59ebec5d58cd278dc0
oai_identifier_str oai:sedici.unlp.edu.ar:10915/84238
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Scalar heat kernel with boundary in the worldline formalismBastianelli, FiorenzoCorradini, OlindoGonzález Pisani, Pablo AndrésSchubert, ChristianCiencias ExactasFísicaField theories in higher dimensionsField theories in lower dimensionsSigma modelsThe worldline formalism has in recent years emerged as a powerful tool for the computation of effective actions and heat kernels. However, implementing nontrivial boundary conditions in this formalism has turned out to be a difficult problem. Recently, such a generalization was developed for the case of a scalar field on the half-space ℝ<SUB>+</SUB> × ℝ<SUP>D-1</SUP>, based on an extension of the associated worldline path integral to the full ℝ<SUP>D</SUP> using image charges. We present here an improved version of this formalism which allows us to write down non-recursive master formulas for the n-point contribution to the heat kernel trace of a scalar field on the half-space with Dirichlet or Neumann boundary conditions. These master formulas are suitable to computerization. We demonstrate the efficiency of the formalism by a calculation of two new heat-kernel coefficients for the half-space, a<SUB>4</SUB> and a<SUB>9/2</SUB>.Facultad de Ciencias ExactasInstituto de Física La Plata2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/84238enginfo:eu-repo/semantics/altIdentifier/issn/1126-6708info:eu-repo/semantics/altIdentifier/doi/10.1088/1126-6708/2008/10/095info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:57:02Zoai:sedici.unlp.edu.ar:10915/84238Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:57:02.92SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Scalar heat kernel with boundary in the worldline formalism
title Scalar heat kernel with boundary in the worldline formalism
spellingShingle Scalar heat kernel with boundary in the worldline formalism
Bastianelli, Fiorenzo
Ciencias Exactas
Física
Field theories in higher dimensions
Field theories in lower dimensions
Sigma models
title_short Scalar heat kernel with boundary in the worldline formalism
title_full Scalar heat kernel with boundary in the worldline formalism
title_fullStr Scalar heat kernel with boundary in the worldline formalism
title_full_unstemmed Scalar heat kernel with boundary in the worldline formalism
title_sort Scalar heat kernel with boundary in the worldline formalism
dc.creator.none.fl_str_mv Bastianelli, Fiorenzo
Corradini, Olindo
González Pisani, Pablo Andrés
Schubert, Christian
author Bastianelli, Fiorenzo
author_facet Bastianelli, Fiorenzo
Corradini, Olindo
González Pisani, Pablo Andrés
Schubert, Christian
author_role author
author2 Corradini, Olindo
González Pisani, Pablo Andrés
Schubert, Christian
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Física
Field theories in higher dimensions
Field theories in lower dimensions
Sigma models
topic Ciencias Exactas
Física
Field theories in higher dimensions
Field theories in lower dimensions
Sigma models
dc.description.none.fl_txt_mv The worldline formalism has in recent years emerged as a powerful tool for the computation of effective actions and heat kernels. However, implementing nontrivial boundary conditions in this formalism has turned out to be a difficult problem. Recently, such a generalization was developed for the case of a scalar field on the half-space ℝ<SUB>+</SUB> × ℝ<SUP>D-1</SUP>, based on an extension of the associated worldline path integral to the full ℝ<SUP>D</SUP> using image charges. We present here an improved version of this formalism which allows us to write down non-recursive master formulas for the n-point contribution to the heat kernel trace of a scalar field on the half-space with Dirichlet or Neumann boundary conditions. These master formulas are suitable to computerization. We demonstrate the efficiency of the formalism by a calculation of two new heat-kernel coefficients for the half-space, a<SUB>4</SUB> and a<SUB>9/2</SUB>.
Facultad de Ciencias Exactas
Instituto de Física La Plata
description The worldline formalism has in recent years emerged as a powerful tool for the computation of effective actions and heat kernels. However, implementing nontrivial boundary conditions in this formalism has turned out to be a difficult problem. Recently, such a generalization was developed for the case of a scalar field on the half-space ℝ<SUB>+</SUB> × ℝ<SUP>D-1</SUP>, based on an extension of the associated worldline path integral to the full ℝ<SUP>D</SUP> using image charges. We present here an improved version of this formalism which allows us to write down non-recursive master formulas for the n-point contribution to the heat kernel trace of a scalar field on the half-space with Dirichlet or Neumann boundary conditions. These master formulas are suitable to computerization. We demonstrate the efficiency of the formalism by a calculation of two new heat-kernel coefficients for the half-space, a<SUB>4</SUB> and a<SUB>9/2</SUB>.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/84238
url http://sedici.unlp.edu.ar/handle/10915/84238
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1126-6708
info:eu-repo/semantics/altIdentifier/doi/10.1088/1126-6708/2008/10/095
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783180879691776
score 12.982451