Worldline formalism for a confined scalar field
- Autores
- Corradini, Olindo; Edwards, James P.; Huet, Idrish; Manzo, Lucas; González Pisani, Pablo Andrés
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The worldline formalism is a useful scheme in quantum field theory which has also become a powerful tool for numerical computations. The key ingredient in this formalism is the first quantization of an auxiliary point-particle whose transition amplitudes correspond to the heat-kernel of the operator of quantum fluctuations of the field theory. However, to study a quantum field which is confined within some boundaries one needs to restrict the path integration domain of the auxiliary point-particle to a specific subset of worldlines enclosed by those boundaries. We show how to implement this restriction for the case of a scalar field confined to the D-dimensional ball under Dirichlet and Neumann boundary conditions, and compute the first few heat-kernel coefficients as a verification of our construction. We argue that this approach could admit different generalizations.
Fil: Corradini, Olindo. Università Di Modena E Reggio Emilia.; Italia. Istituto Nazionale Di Fisica Nucleare; Italia
Fil: Edwards, James P.. Universidad Michoacana de San Nicolás de Hidalgo; México
Fil: Huet, Idrish. Universidad Nacional Autónoma de México; México
Fil: Manzo, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: González Pisani, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina - Materia
-
DIFFERENTIAL AND ALGEBRAIC GEOMETRY
FIELD THEORIES IN HIGHER DIMENSIONS
SPACETIME SINGULARITIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/128553
Ver los metadatos del registro completo
id |
CONICETDig_f8f25b28720e9b7bf69fc022476f2314 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/128553 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Worldline formalism for a confined scalar fieldCorradini, OlindoEdwards, James P.Huet, IdrishManzo, LucasGonzález Pisani, Pablo AndrésDIFFERENTIAL AND ALGEBRAIC GEOMETRYFIELD THEORIES IN HIGHER DIMENSIONSSPACETIME SINGULARITIEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The worldline formalism is a useful scheme in quantum field theory which has also become a powerful tool for numerical computations. The key ingredient in this formalism is the first quantization of an auxiliary point-particle whose transition amplitudes correspond to the heat-kernel of the operator of quantum fluctuations of the field theory. However, to study a quantum field which is confined within some boundaries one needs to restrict the path integration domain of the auxiliary point-particle to a specific subset of worldlines enclosed by those boundaries. We show how to implement this restriction for the case of a scalar field confined to the D-dimensional ball under Dirichlet and Neumann boundary conditions, and compute the first few heat-kernel coefficients as a verification of our construction. We argue that this approach could admit different generalizations.Fil: Corradini, Olindo. Università Di Modena E Reggio Emilia.; Italia. Istituto Nazionale Di Fisica Nucleare; ItaliaFil: Edwards, James P.. Universidad Michoacana de San Nicolás de Hidalgo; MéxicoFil: Huet, Idrish. Universidad Nacional Autónoma de México; MéxicoFil: Manzo, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: González Pisani, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaSpringer2019-08-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/128553Corradini, Olindo; Edwards, James P.; Huet, Idrish; Manzo, Lucas; González Pisani, Pablo Andrés; Worldline formalism for a confined scalar field; Springer; Journal of High Energy Physics; 8; 37; 7-8-2019; 1-211126-6708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP08(2019)037info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP08(2019)037info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1905.00945info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:52:20Zoai:ri.conicet.gov.ar:11336/128553instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:52:20.908CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Worldline formalism for a confined scalar field |
title |
Worldline formalism for a confined scalar field |
spellingShingle |
Worldline formalism for a confined scalar field Corradini, Olindo DIFFERENTIAL AND ALGEBRAIC GEOMETRY FIELD THEORIES IN HIGHER DIMENSIONS SPACETIME SINGULARITIES |
title_short |
Worldline formalism for a confined scalar field |
title_full |
Worldline formalism for a confined scalar field |
title_fullStr |
Worldline formalism for a confined scalar field |
title_full_unstemmed |
Worldline formalism for a confined scalar field |
title_sort |
Worldline formalism for a confined scalar field |
dc.creator.none.fl_str_mv |
Corradini, Olindo Edwards, James P. Huet, Idrish Manzo, Lucas González Pisani, Pablo Andrés |
author |
Corradini, Olindo |
author_facet |
Corradini, Olindo Edwards, James P. Huet, Idrish Manzo, Lucas González Pisani, Pablo Andrés |
author_role |
author |
author2 |
Edwards, James P. Huet, Idrish Manzo, Lucas González Pisani, Pablo Andrés |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
DIFFERENTIAL AND ALGEBRAIC GEOMETRY FIELD THEORIES IN HIGHER DIMENSIONS SPACETIME SINGULARITIES |
topic |
DIFFERENTIAL AND ALGEBRAIC GEOMETRY FIELD THEORIES IN HIGHER DIMENSIONS SPACETIME SINGULARITIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The worldline formalism is a useful scheme in quantum field theory which has also become a powerful tool for numerical computations. The key ingredient in this formalism is the first quantization of an auxiliary point-particle whose transition amplitudes correspond to the heat-kernel of the operator of quantum fluctuations of the field theory. However, to study a quantum field which is confined within some boundaries one needs to restrict the path integration domain of the auxiliary point-particle to a specific subset of worldlines enclosed by those boundaries. We show how to implement this restriction for the case of a scalar field confined to the D-dimensional ball under Dirichlet and Neumann boundary conditions, and compute the first few heat-kernel coefficients as a verification of our construction. We argue that this approach could admit different generalizations. Fil: Corradini, Olindo. Università Di Modena E Reggio Emilia.; Italia. Istituto Nazionale Di Fisica Nucleare; Italia Fil: Edwards, James P.. Universidad Michoacana de San Nicolás de Hidalgo; México Fil: Huet, Idrish. Universidad Nacional Autónoma de México; México Fil: Manzo, Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: González Pisani, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina |
description |
The worldline formalism is a useful scheme in quantum field theory which has also become a powerful tool for numerical computations. The key ingredient in this formalism is the first quantization of an auxiliary point-particle whose transition amplitudes correspond to the heat-kernel of the operator of quantum fluctuations of the field theory. However, to study a quantum field which is confined within some boundaries one needs to restrict the path integration domain of the auxiliary point-particle to a specific subset of worldlines enclosed by those boundaries. We show how to implement this restriction for the case of a scalar field confined to the D-dimensional ball under Dirichlet and Neumann boundary conditions, and compute the first few heat-kernel coefficients as a verification of our construction. We argue that this approach could admit different generalizations. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/128553 Corradini, Olindo; Edwards, James P.; Huet, Idrish; Manzo, Lucas; González Pisani, Pablo Andrés; Worldline formalism for a confined scalar field; Springer; Journal of High Energy Physics; 8; 37; 7-8-2019; 1-21 1126-6708 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/128553 |
identifier_str_mv |
Corradini, Olindo; Edwards, James P.; Huet, Idrish; Manzo, Lucas; González Pisani, Pablo Andrés; Worldline formalism for a confined scalar field; Springer; Journal of High Energy Physics; 8; 37; 7-8-2019; 1-21 1126-6708 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP08(2019)037 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP08(2019)037 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1905.00945 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613605627002880 |
score |
13.070432 |