Worldline formalism for a confined scalar field
- Autores
- Corradini, Olindo; Edwards, James P.; Huet, Idrish; Manzo, Lucas; González Pisani, Pablo Andrés
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The worldline formalism is a useful scheme in quantum field theory which has also become a powerful tool for numerical computations. The key ingredient in this formalism is the first quantization of an auxiliary point-particle whose transition amplitudes correspond to the heat-kernel of the operator of quantum fluctuations of the field theory. However, to study a quantum field which is confined within some boundaries one needs to restrict the path integration domain of the auxiliary point-particle to a specific subset of worldlines enclosed by those boundaries. We show how to implement this restriction for the case of a scalar field confined to the D-dimensional ball under Dirichlet and Neumann boundary conditions, and compute the first few heat-kernel coefficients as a verification of our construction. We argue that this approach could admit different generalizations.
Facultad de Ciencias Exactas
Instituto de Física La Plata - Materia
-
Ciencias Exactas
Física
Field Theories in Higher Dimensions
Spacetime Singularities
Differential and Algebraic Geometry - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/123514
Ver los metadatos del registro completo
id |
SEDICI_8ad1052c44df84b4720ae027003ab27c |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/123514 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Worldline formalism for a confined scalar fieldCorradini, OlindoEdwards, James P.Huet, IdrishManzo, LucasGonzález Pisani, Pablo AndrésCiencias ExactasFísicaField Theories in Higher DimensionsSpacetime SingularitiesDifferential and Algebraic GeometryThe worldline formalism is a useful scheme in quantum field theory which has also become a powerful tool for numerical computations. The key ingredient in this formalism is the first quantization of an auxiliary point-particle whose transition amplitudes correspond to the heat-kernel of the operator of quantum fluctuations of the field theory. However, to study a quantum field which is confined within some boundaries one needs to restrict the path integration domain of the auxiliary point-particle to a specific subset of worldlines enclosed by those boundaries. We show how to implement this restriction for the case of a scalar field confined to the D-dimensional ball under Dirichlet and Neumann boundary conditions, and compute the first few heat-kernel coefficients as a verification of our construction. We argue that this approach could admit different generalizations.Facultad de Ciencias ExactasInstituto de Física La Plata2019-08-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1-21http://sedici.unlp.edu.ar/handle/10915/123514enginfo:eu-repo/semantics/altIdentifier/issn/1029-8479info:eu-repo/semantics/altIdentifier/arxiv/1905.00945info:eu-repo/semantics/altIdentifier/doi/10.1007/jhep08(2019)037info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:32:07Zoai:sedici.unlp.edu.ar:10915/123514Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:32:07.176SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Worldline formalism for a confined scalar field |
title |
Worldline formalism for a confined scalar field |
spellingShingle |
Worldline formalism for a confined scalar field Corradini, Olindo Ciencias Exactas Física Field Theories in Higher Dimensions Spacetime Singularities Differential and Algebraic Geometry |
title_short |
Worldline formalism for a confined scalar field |
title_full |
Worldline formalism for a confined scalar field |
title_fullStr |
Worldline formalism for a confined scalar field |
title_full_unstemmed |
Worldline formalism for a confined scalar field |
title_sort |
Worldline formalism for a confined scalar field |
dc.creator.none.fl_str_mv |
Corradini, Olindo Edwards, James P. Huet, Idrish Manzo, Lucas González Pisani, Pablo Andrés |
author |
Corradini, Olindo |
author_facet |
Corradini, Olindo Edwards, James P. Huet, Idrish Manzo, Lucas González Pisani, Pablo Andrés |
author_role |
author |
author2 |
Edwards, James P. Huet, Idrish Manzo, Lucas González Pisani, Pablo Andrés |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Física Field Theories in Higher Dimensions Spacetime Singularities Differential and Algebraic Geometry |
topic |
Ciencias Exactas Física Field Theories in Higher Dimensions Spacetime Singularities Differential and Algebraic Geometry |
dc.description.none.fl_txt_mv |
The worldline formalism is a useful scheme in quantum field theory which has also become a powerful tool for numerical computations. The key ingredient in this formalism is the first quantization of an auxiliary point-particle whose transition amplitudes correspond to the heat-kernel of the operator of quantum fluctuations of the field theory. However, to study a quantum field which is confined within some boundaries one needs to restrict the path integration domain of the auxiliary point-particle to a specific subset of worldlines enclosed by those boundaries. We show how to implement this restriction for the case of a scalar field confined to the D-dimensional ball under Dirichlet and Neumann boundary conditions, and compute the first few heat-kernel coefficients as a verification of our construction. We argue that this approach could admit different generalizations. Facultad de Ciencias Exactas Instituto de Física La Plata |
description |
The worldline formalism is a useful scheme in quantum field theory which has also become a powerful tool for numerical computations. The key ingredient in this formalism is the first quantization of an auxiliary point-particle whose transition amplitudes correspond to the heat-kernel of the operator of quantum fluctuations of the field theory. However, to study a quantum field which is confined within some boundaries one needs to restrict the path integration domain of the auxiliary point-particle to a specific subset of worldlines enclosed by those boundaries. We show how to implement this restriction for the case of a scalar field confined to the D-dimensional ball under Dirichlet and Neumann boundary conditions, and compute the first few heat-kernel coefficients as a verification of our construction. We argue that this approach could admit different generalizations. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/123514 |
url |
http://sedici.unlp.edu.ar/handle/10915/123514 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1029-8479 info:eu-repo/semantics/altIdentifier/arxiv/1905.00945 info:eu-repo/semantics/altIdentifier/doi/10.1007/jhep08(2019)037 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1-21 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842904431163604992 |
score |
12.993085 |