Worldline formalism for a confined scalar field

Autores
Corradini, Olindo; Edwards, James P.; Huet, Idrish; Manzo, Lucas; González Pisani, Pablo Andrés
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The worldline formalism is a useful scheme in quantum field theory which has also become a powerful tool for numerical computations. The key ingredient in this formalism is the first quantization of an auxiliary point-particle whose transition amplitudes correspond to the heat-kernel of the operator of quantum fluctuations of the field theory. However, to study a quantum field which is confined within some boundaries one needs to restrict the path integration domain of the auxiliary point-particle to a specific subset of worldlines enclosed by those boundaries. We show how to implement this restriction for the case of a scalar field confined to the D-dimensional ball under Dirichlet and Neumann boundary conditions, and compute the first few heat-kernel coefficients as a verification of our construction. We argue that this approach could admit different generalizations.
Facultad de Ciencias Exactas
Instituto de Física La Plata
Materia
Ciencias Exactas
Física
Field Theories in Higher Dimensions
Spacetime Singularities
Differential and Algebraic Geometry
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/123514

id SEDICI_8ad1052c44df84b4720ae027003ab27c
oai_identifier_str oai:sedici.unlp.edu.ar:10915/123514
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Worldline formalism for a confined scalar fieldCorradini, OlindoEdwards, James P.Huet, IdrishManzo, LucasGonzález Pisani, Pablo AndrésCiencias ExactasFísicaField Theories in Higher DimensionsSpacetime SingularitiesDifferential and Algebraic GeometryThe worldline formalism is a useful scheme in quantum field theory which has also become a powerful tool for numerical computations. The key ingredient in this formalism is the first quantization of an auxiliary point-particle whose transition amplitudes correspond to the heat-kernel of the operator of quantum fluctuations of the field theory. However, to study a quantum field which is confined within some boundaries one needs to restrict the path integration domain of the auxiliary point-particle to a specific subset of worldlines enclosed by those boundaries. We show how to implement this restriction for the case of a scalar field confined to the D-dimensional ball under Dirichlet and Neumann boundary conditions, and compute the first few heat-kernel coefficients as a verification of our construction. We argue that this approach could admit different generalizations.Facultad de Ciencias ExactasInstituto de Física La Plata2019-08-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1-21http://sedici.unlp.edu.ar/handle/10915/123514enginfo:eu-repo/semantics/altIdentifier/issn/1029-8479info:eu-repo/semantics/altIdentifier/arxiv/1905.00945info:eu-repo/semantics/altIdentifier/doi/10.1007/jhep08(2019)037info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:32:07Zoai:sedici.unlp.edu.ar:10915/123514Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:32:07.176SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Worldline formalism for a confined scalar field
title Worldline formalism for a confined scalar field
spellingShingle Worldline formalism for a confined scalar field
Corradini, Olindo
Ciencias Exactas
Física
Field Theories in Higher Dimensions
Spacetime Singularities
Differential and Algebraic Geometry
title_short Worldline formalism for a confined scalar field
title_full Worldline formalism for a confined scalar field
title_fullStr Worldline formalism for a confined scalar field
title_full_unstemmed Worldline formalism for a confined scalar field
title_sort Worldline formalism for a confined scalar field
dc.creator.none.fl_str_mv Corradini, Olindo
Edwards, James P.
Huet, Idrish
Manzo, Lucas
González Pisani, Pablo Andrés
author Corradini, Olindo
author_facet Corradini, Olindo
Edwards, James P.
Huet, Idrish
Manzo, Lucas
González Pisani, Pablo Andrés
author_role author
author2 Edwards, James P.
Huet, Idrish
Manzo, Lucas
González Pisani, Pablo Andrés
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Física
Field Theories in Higher Dimensions
Spacetime Singularities
Differential and Algebraic Geometry
topic Ciencias Exactas
Física
Field Theories in Higher Dimensions
Spacetime Singularities
Differential and Algebraic Geometry
dc.description.none.fl_txt_mv The worldline formalism is a useful scheme in quantum field theory which has also become a powerful tool for numerical computations. The key ingredient in this formalism is the first quantization of an auxiliary point-particle whose transition amplitudes correspond to the heat-kernel of the operator of quantum fluctuations of the field theory. However, to study a quantum field which is confined within some boundaries one needs to restrict the path integration domain of the auxiliary point-particle to a specific subset of worldlines enclosed by those boundaries. We show how to implement this restriction for the case of a scalar field confined to the D-dimensional ball under Dirichlet and Neumann boundary conditions, and compute the first few heat-kernel coefficients as a verification of our construction. We argue that this approach could admit different generalizations.
Facultad de Ciencias Exactas
Instituto de Física La Plata
description The worldline formalism is a useful scheme in quantum field theory which has also become a powerful tool for numerical computations. The key ingredient in this formalism is the first quantization of an auxiliary point-particle whose transition amplitudes correspond to the heat-kernel of the operator of quantum fluctuations of the field theory. However, to study a quantum field which is confined within some boundaries one needs to restrict the path integration domain of the auxiliary point-particle to a specific subset of worldlines enclosed by those boundaries. We show how to implement this restriction for the case of a scalar field confined to the D-dimensional ball under Dirichlet and Neumann boundary conditions, and compute the first few heat-kernel coefficients as a verification of our construction. We argue that this approach could admit different generalizations.
publishDate 2019
dc.date.none.fl_str_mv 2019-08-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/123514
url http://sedici.unlp.edu.ar/handle/10915/123514
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1029-8479
info:eu-repo/semantics/altIdentifier/arxiv/1905.00945
info:eu-repo/semantics/altIdentifier/doi/10.1007/jhep08(2019)037
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
1-21
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842904431163604992
score 12.993085