Elton's near unconditionality of bases as a threshold-free form of greediness

Autores
Albiac, Fernando; Ansorena, José L.; Berasategui, Miguel Hernán
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Elton's near unconditionality and quasi-greediness for largest coefficients are two properties of bases that made their appearance in functional analysis from very different areas of research. One of our aims in this note is to show that, oddly enough, they are connected to the extent that they are equivalent notions. We take advantage of this new description of the former property to further the study of the threshold function associated with near unconditionality. Finally, we make a contribution to the isometric theory of greedy bases by characterizing those bases that are 1-quasi-greedy for largest coefficients.
Fil: Albiac, Fernando. Universidad Publica de Navarra. Departamento de Ciencias.; España
Fil: Ansorena, José L.. Universidad de la Rioja; España
Fil: Berasategui, Miguel Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
NEARLY UNCONDITIONAL BASES
THRESHOLDING GREEDY ALGORITHM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/228491

id CONICETDig_4115f03a4b725f63833c03f7d35dfc52
oai_identifier_str oai:ri.conicet.gov.ar:11336/228491
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Elton's near unconditionality of bases as a threshold-free form of greedinessAlbiac, FernandoAnsorena, José L.Berasategui, Miguel HernánNEARLY UNCONDITIONAL BASESTHRESHOLDING GREEDY ALGORITHMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Elton's near unconditionality and quasi-greediness for largest coefficients are two properties of bases that made their appearance in functional analysis from very different areas of research. One of our aims in this note is to show that, oddly enough, they are connected to the extent that they are equivalent notions. We take advantage of this new description of the former property to further the study of the threshold function associated with near unconditionality. Finally, we make a contribution to the isometric theory of greedy bases by characterizing those bases that are 1-quasi-greedy for largest coefficients.Fil: Albiac, Fernando. Universidad Publica de Navarra. Departamento de Ciencias.; EspañaFil: Ansorena, José L.. Universidad de la Rioja; EspañaFil: Berasategui, Miguel Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaAcademic Press Inc Elsevier Science2023-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/228491Albiac, Fernando; Ansorena, José L.; Berasategui, Miguel Hernán; Elton's near unconditionality of bases as a threshold-free form of greediness; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 285; 7; 10-2023; 1-220022-1236CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0022123623002173info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2023.110060info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:33Zoai:ri.conicet.gov.ar:11336/228491instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:33.712CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Elton's near unconditionality of bases as a threshold-free form of greediness
title Elton's near unconditionality of bases as a threshold-free form of greediness
spellingShingle Elton's near unconditionality of bases as a threshold-free form of greediness
Albiac, Fernando
NEARLY UNCONDITIONAL BASES
THRESHOLDING GREEDY ALGORITHM
title_short Elton's near unconditionality of bases as a threshold-free form of greediness
title_full Elton's near unconditionality of bases as a threshold-free form of greediness
title_fullStr Elton's near unconditionality of bases as a threshold-free form of greediness
title_full_unstemmed Elton's near unconditionality of bases as a threshold-free form of greediness
title_sort Elton's near unconditionality of bases as a threshold-free form of greediness
dc.creator.none.fl_str_mv Albiac, Fernando
Ansorena, José L.
Berasategui, Miguel Hernán
author Albiac, Fernando
author_facet Albiac, Fernando
Ansorena, José L.
Berasategui, Miguel Hernán
author_role author
author2 Ansorena, José L.
Berasategui, Miguel Hernán
author2_role author
author
dc.subject.none.fl_str_mv NEARLY UNCONDITIONAL BASES
THRESHOLDING GREEDY ALGORITHM
topic NEARLY UNCONDITIONAL BASES
THRESHOLDING GREEDY ALGORITHM
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Elton's near unconditionality and quasi-greediness for largest coefficients are two properties of bases that made their appearance in functional analysis from very different areas of research. One of our aims in this note is to show that, oddly enough, they are connected to the extent that they are equivalent notions. We take advantage of this new description of the former property to further the study of the threshold function associated with near unconditionality. Finally, we make a contribution to the isometric theory of greedy bases by characterizing those bases that are 1-quasi-greedy for largest coefficients.
Fil: Albiac, Fernando. Universidad Publica de Navarra. Departamento de Ciencias.; España
Fil: Ansorena, José L.. Universidad de la Rioja; España
Fil: Berasategui, Miguel Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description Elton's near unconditionality and quasi-greediness for largest coefficients are two properties of bases that made their appearance in functional analysis from very different areas of research. One of our aims in this note is to show that, oddly enough, they are connected to the extent that they are equivalent notions. We take advantage of this new description of the former property to further the study of the threshold function associated with near unconditionality. Finally, we make a contribution to the isometric theory of greedy bases by characterizing those bases that are 1-quasi-greedy for largest coefficients.
publishDate 2023
dc.date.none.fl_str_mv 2023-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/228491
Albiac, Fernando; Ansorena, José L.; Berasategui, Miguel Hernán; Elton's near unconditionality of bases as a threshold-free form of greediness; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 285; 7; 10-2023; 1-22
0022-1236
CONICET Digital
CONICET
url http://hdl.handle.net/11336/228491
identifier_str_mv Albiac, Fernando; Ansorena, José L.; Berasategui, Miguel Hernán; Elton's near unconditionality of bases as a threshold-free form of greediness; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 285; 7; 10-2023; 1-22
0022-1236
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0022123623002173
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfa.2023.110060
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268674737569792
score 13.13397