Greedy-like bases for sequences with gaps
- Autores
- Berasategui, Miguel Hernán; Berná, Pablo M.
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In 2018, Oikhberg introduced and studied variants of the greedy and weak greedy algorithms for sequences with gaps, with a focus on the n-t-quasi-greedy property that is based on them. Building upon this foundation, our current work aims to further investigate these algorithms and bases while introducing new ideas for two primary purposes. First, we aim to prove that for n with bounded quotient gaps, n-t-quasi-greedy bases are quasi-greedy bases. This generalization extends a previous result to the context of Markushevich bases and, also, completes the answer to a question by Oikhberg. The second objective is to extend certain approximation properties of the greedy algorithm to the context of sequences with gaps and study if there is a relationship between this new extension and the usual convergence.
Fil: Berasategui, Miguel Hernán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Berná, Pablo M.. Cunef Universidad; España - Materia
-
NON-LINEAR APPROXIMATION
GREEDY BASES
WEAK GREEDY ALGORITHM
QUASI-GREEDY BASES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/234649
Ver los metadatos del registro completo
id |
CONICETDig_ea2b120b978256c47fe4b4e112a17e4f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/234649 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Greedy-like bases for sequences with gapsBerasategui, Miguel HernánBerná, Pablo M.NON-LINEAR APPROXIMATIONGREEDY BASESWEAK GREEDY ALGORITHMQUASI-GREEDY BASEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In 2018, Oikhberg introduced and studied variants of the greedy and weak greedy algorithms for sequences with gaps, with a focus on the n-t-quasi-greedy property that is based on them. Building upon this foundation, our current work aims to further investigate these algorithms and bases while introducing new ideas for two primary purposes. First, we aim to prove that for n with bounded quotient gaps, n-t-quasi-greedy bases are quasi-greedy bases. This generalization extends a previous result to the context of Markushevich bases and, also, completes the answer to a question by Oikhberg. The second objective is to extend certain approximation properties of the greedy algorithm to the context of sequences with gaps and study if there is a relationship between this new extension and the usual convergence.Fil: Berasategui, Miguel Hernán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Berná, Pablo M.. Cunef Universidad; EspañaBirkhauser2024-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/234649Berasategui, Miguel Hernán; Berná, Pablo M.; Greedy-like bases for sequences with gaps; Birkhauser; Banach Journal of Mathematical Analysis; 18; 2; 2-2024; 1-432662-20331735-8787CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s43037-024-00324-2info:eu-repo/semantics/altIdentifier/doi/10.1007/s43037-024-00324-2info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2009.02257info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:51Zoai:ri.conicet.gov.ar:11336/234649instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:51.614CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Greedy-like bases for sequences with gaps |
title |
Greedy-like bases for sequences with gaps |
spellingShingle |
Greedy-like bases for sequences with gaps Berasategui, Miguel Hernán NON-LINEAR APPROXIMATION GREEDY BASES WEAK GREEDY ALGORITHM QUASI-GREEDY BASES |
title_short |
Greedy-like bases for sequences with gaps |
title_full |
Greedy-like bases for sequences with gaps |
title_fullStr |
Greedy-like bases for sequences with gaps |
title_full_unstemmed |
Greedy-like bases for sequences with gaps |
title_sort |
Greedy-like bases for sequences with gaps |
dc.creator.none.fl_str_mv |
Berasategui, Miguel Hernán Berná, Pablo M. |
author |
Berasategui, Miguel Hernán |
author_facet |
Berasategui, Miguel Hernán Berná, Pablo M. |
author_role |
author |
author2 |
Berná, Pablo M. |
author2_role |
author |
dc.subject.none.fl_str_mv |
NON-LINEAR APPROXIMATION GREEDY BASES WEAK GREEDY ALGORITHM QUASI-GREEDY BASES |
topic |
NON-LINEAR APPROXIMATION GREEDY BASES WEAK GREEDY ALGORITHM QUASI-GREEDY BASES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In 2018, Oikhberg introduced and studied variants of the greedy and weak greedy algorithms for sequences with gaps, with a focus on the n-t-quasi-greedy property that is based on them. Building upon this foundation, our current work aims to further investigate these algorithms and bases while introducing new ideas for two primary purposes. First, we aim to prove that for n with bounded quotient gaps, n-t-quasi-greedy bases are quasi-greedy bases. This generalization extends a previous result to the context of Markushevich bases and, also, completes the answer to a question by Oikhberg. The second objective is to extend certain approximation properties of the greedy algorithm to the context of sequences with gaps and study if there is a relationship between this new extension and the usual convergence. Fil: Berasategui, Miguel Hernán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Berná, Pablo M.. Cunef Universidad; España |
description |
In 2018, Oikhberg introduced and studied variants of the greedy and weak greedy algorithms for sequences with gaps, with a focus on the n-t-quasi-greedy property that is based on them. Building upon this foundation, our current work aims to further investigate these algorithms and bases while introducing new ideas for two primary purposes. First, we aim to prove that for n with bounded quotient gaps, n-t-quasi-greedy bases are quasi-greedy bases. This generalization extends a previous result to the context of Markushevich bases and, also, completes the answer to a question by Oikhberg. The second objective is to extend certain approximation properties of the greedy algorithm to the context of sequences with gaps and study if there is a relationship between this new extension and the usual convergence. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/234649 Berasategui, Miguel Hernán; Berná, Pablo M.; Greedy-like bases for sequences with gaps; Birkhauser; Banach Journal of Mathematical Analysis; 18; 2; 2-2024; 1-43 2662-2033 1735-8787 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/234649 |
identifier_str_mv |
Berasategui, Miguel Hernán; Berná, Pablo M.; Greedy-like bases for sequences with gaps; Birkhauser; Banach Journal of Mathematical Analysis; 18; 2; 2-2024; 1-43 2662-2033 1735-8787 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s43037-024-00324-2 info:eu-repo/semantics/altIdentifier/doi/10.1007/s43037-024-00324-2 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2009.02257 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Birkhauser |
publisher.none.fl_str_mv |
Birkhauser |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269824515833856 |
score |
13.13397 |