Weak weight-semi-greedy Markushevich bases
- Autores
- Berasategui, Miguel Hernán; Lassalle, Silvia Beatriz
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The main purpose of this paper is to study weight-semi-greedy Markushevich bases, and in particular, find conditions under which such bases are weight-almost greedy. In this context, we prove that, for a large class of weights, the two notions are equivalent. We also show that all weight semi-greedy bases are truncation quasi-greedy and weight-superdemocratic. In all of the above cases, we also bring to the context of weights the weak greedy and Chebyshev greedy algorithms—which are frequently studied in the literature on greedy approximation. In the course of our work, a new property arises naturally and its relation with squeeze symmetric and bidemocratic bases is given. In addition, we study some parameters involving the weak thresholding and Chebyshevian greedy algorithms. Finally, we give examples of conditional bases with some of the weighted greedy-type conditions we study.
Fil: Berasategui, Miguel Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Lassalle, Silvia Beatriz. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
GREEDY-LIKE BASES
NON-LINEAR APPROXIMATION
SEMI-GREEDY VARIANTS
WEIGHT GREEDY ALGORIGTHM
BASES
GREEDY APPROXIMATION
WEIGHTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/232897
Ver los metadatos del registro completo
id |
CONICETDig_9b24854a63aee6131c969b171304674f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/232897 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Weak weight-semi-greedy Markushevich basesBerasategui, Miguel HernánLassalle, Silvia BeatrizGREEDY-LIKE BASESNON-LINEAR APPROXIMATIONSEMI-GREEDY VARIANTSWEIGHT GREEDY ALGORIGTHMBASESGREEDY APPROXIMATIONWEIGHTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The main purpose of this paper is to study weight-semi-greedy Markushevich bases, and in particular, find conditions under which such bases are weight-almost greedy. In this context, we prove that, for a large class of weights, the two notions are equivalent. We also show that all weight semi-greedy bases are truncation quasi-greedy and weight-superdemocratic. In all of the above cases, we also bring to the context of weights the weak greedy and Chebyshev greedy algorithms—which are frequently studied in the literature on greedy approximation. In the course of our work, a new property arises naturally and its relation with squeeze symmetric and bidemocratic bases is given. In addition, we study some parameters involving the weak thresholding and Chebyshevian greedy algorithms. Finally, we give examples of conditional bases with some of the weighted greedy-type conditions we study.Fil: Berasategui, Miguel Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Lassalle, Silvia Beatriz. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaCambridge University Press2023-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/232897Berasategui, Miguel Hernán; Lassalle, Silvia Beatriz; Weak weight-semi-greedy Markushevich bases; Cambridge University Press; Proceedings Of The Royal Society Of Edinburgh Section A-mathematics; 154; 2; 6-2023; 1-620308-21051473-7124CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/product/identifier/S0308210523000537/type/journal_articleinfo:eu-repo/semantics/altIdentifier/doi/10.1017/prm.2023.53info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2111.00693info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:50Zoai:ri.conicet.gov.ar:11336/232897instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:50.414CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Weak weight-semi-greedy Markushevich bases |
title |
Weak weight-semi-greedy Markushevich bases |
spellingShingle |
Weak weight-semi-greedy Markushevich bases Berasategui, Miguel Hernán GREEDY-LIKE BASES NON-LINEAR APPROXIMATION SEMI-GREEDY VARIANTS WEIGHT GREEDY ALGORIGTHM BASES GREEDY APPROXIMATION WEIGHTS |
title_short |
Weak weight-semi-greedy Markushevich bases |
title_full |
Weak weight-semi-greedy Markushevich bases |
title_fullStr |
Weak weight-semi-greedy Markushevich bases |
title_full_unstemmed |
Weak weight-semi-greedy Markushevich bases |
title_sort |
Weak weight-semi-greedy Markushevich bases |
dc.creator.none.fl_str_mv |
Berasategui, Miguel Hernán Lassalle, Silvia Beatriz |
author |
Berasategui, Miguel Hernán |
author_facet |
Berasategui, Miguel Hernán Lassalle, Silvia Beatriz |
author_role |
author |
author2 |
Lassalle, Silvia Beatriz |
author2_role |
author |
dc.subject.none.fl_str_mv |
GREEDY-LIKE BASES NON-LINEAR APPROXIMATION SEMI-GREEDY VARIANTS WEIGHT GREEDY ALGORIGTHM BASES GREEDY APPROXIMATION WEIGHTS |
topic |
GREEDY-LIKE BASES NON-LINEAR APPROXIMATION SEMI-GREEDY VARIANTS WEIGHT GREEDY ALGORIGTHM BASES GREEDY APPROXIMATION WEIGHTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The main purpose of this paper is to study weight-semi-greedy Markushevich bases, and in particular, find conditions under which such bases are weight-almost greedy. In this context, we prove that, for a large class of weights, the two notions are equivalent. We also show that all weight semi-greedy bases are truncation quasi-greedy and weight-superdemocratic. In all of the above cases, we also bring to the context of weights the weak greedy and Chebyshev greedy algorithms—which are frequently studied in the literature on greedy approximation. In the course of our work, a new property arises naturally and its relation with squeeze symmetric and bidemocratic bases is given. In addition, we study some parameters involving the weak thresholding and Chebyshevian greedy algorithms. Finally, we give examples of conditional bases with some of the weighted greedy-type conditions we study. Fil: Berasategui, Miguel Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Lassalle, Silvia Beatriz. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
The main purpose of this paper is to study weight-semi-greedy Markushevich bases, and in particular, find conditions under which such bases are weight-almost greedy. In this context, we prove that, for a large class of weights, the two notions are equivalent. We also show that all weight semi-greedy bases are truncation quasi-greedy and weight-superdemocratic. In all of the above cases, we also bring to the context of weights the weak greedy and Chebyshev greedy algorithms—which are frequently studied in the literature on greedy approximation. In the course of our work, a new property arises naturally and its relation with squeeze symmetric and bidemocratic bases is given. In addition, we study some parameters involving the weak thresholding and Chebyshevian greedy algorithms. Finally, we give examples of conditional bases with some of the weighted greedy-type conditions we study. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/232897 Berasategui, Miguel Hernán; Lassalle, Silvia Beatriz; Weak weight-semi-greedy Markushevich bases; Cambridge University Press; Proceedings Of The Royal Society Of Edinburgh Section A-mathematics; 154; 2; 6-2023; 1-62 0308-2105 1473-7124 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/232897 |
identifier_str_mv |
Berasategui, Miguel Hernán; Lassalle, Silvia Beatriz; Weak weight-semi-greedy Markushevich bases; Cambridge University Press; Proceedings Of The Royal Society Of Edinburgh Section A-mathematics; 154; 2; 6-2023; 1-62 0308-2105 1473-7124 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/product/identifier/S0308210523000537/type/journal_article info:eu-repo/semantics/altIdentifier/doi/10.1017/prm.2023.53 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2111.00693 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge University Press |
publisher.none.fl_str_mv |
Cambridge University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270172344221696 |
score |
13.13397 |