Symmetry properties for the extremals of the Sobolev trace embedding
- Autores
- Fernandez Bonder, Julian; Lami Dozo, Enrique Jose; Rossi, Julio Daniel
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article we study symmetry properties of the extremals for the Sobolev trace embedding H1(B(0, µ)) ,→ Lq(∂B(0, µ)) with 1 ≤ q ≤2(N − 1)/(N − 2) for different values of µ. These extremals u are solutions of the problem {∆u = u in B(0, µ), ∂u_∂η = λ|u|q−2u on ∂B(0, µ). We find that, for 1 ≤ q < 2(N − 1)/(N − 2), there exists a unique normalized extremal u, which is positive and has to be radial, for µ small enough. For the critical case, q = 2(N−1)/(N−2), as a consequence of the symmetry properties for small balls, we conclude the existence of radial extremals. Finally, for 1 < q ≤ 2, we show that a radial extremal exists for every ball.
Dans cet article nous étudions des propriétés de symétrie des extrémales de l’immersion de Sobolev H1(B(0, µ)) →Lq (∂B(0, µ)), où 1 q 2(N − 1)/(N − 2) en fonction du rayon µ. Ces extrémales sont solutions du problème {∆= u dans B(0, µ), ∂u_∂η = λ|u| q−2u sur ∂B(0, µ). Nous trouvons que, pour 1 ≤ q < 2(N − 1)/(N − 2), il existe une extrémale normalisée unique u, qui est positive et radiale, pour µ suffisamment petite. Dans le cas critique q = 2(N − 1)/(N − 2), comme conséquence des propriétés de symétrie pour des petits rayons, nous déduisons l’existence d’extrémales. Finalement, pour 1 < q ≤ 2, nous montrons qu’une extrémale radiale existe pour toute boule.
Fil: Fernandez Bonder, Julian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Lami Dozo, Enrique Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina - Materia
-
NONLINEAR BOUNDARY CONDITIONS
SOBOLEV TRACE EMBEDDING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/110302
Ver los metadatos del registro completo
id |
CONICETDig_3f15f7745988fa3f2beac6b3c6c5ce5b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/110302 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Symmetry properties for the extremals of the Sobolev trace embeddingFernandez Bonder, JulianLami Dozo, Enrique JoseRossi, Julio DanielNONLINEAR BOUNDARY CONDITIONSSOBOLEV TRACE EMBEDDINGhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article we study symmetry properties of the extremals for the Sobolev trace embedding H1(B(0, µ)) ,→ Lq(∂B(0, µ)) with 1 ≤ q ≤2(N − 1)/(N − 2) for different values of µ. These extremals u are solutions of the problem {∆u = u in B(0, µ), ∂u_∂η = λ|u|q−2u on ∂B(0, µ). We find that, for 1 ≤ q < 2(N − 1)/(N − 2), there exists a unique normalized extremal u, which is positive and has to be radial, for µ small enough. For the critical case, q = 2(N−1)/(N−2), as a consequence of the symmetry properties for small balls, we conclude the existence of radial extremals. Finally, for 1 < q ≤ 2, we show that a radial extremal exists for every ball.Dans cet article nous étudions des propriétés de symétrie des extrémales de l’immersion de Sobolev H1(B(0, µ)) →Lq (∂B(0, µ)), où 1 q 2(N − 1)/(N − 2) en fonction du rayon µ. Ces extrémales sont solutions du problème {∆= u dans B(0, µ), ∂u_∂η = λ|u| q−2u sur ∂B(0, µ). Nous trouvons que, pour 1 ≤ q < 2(N − 1)/(N − 2), il existe une extrémale normalisée unique u, qui est positive et radiale, pour µ suffisamment petite. Dans le cas critique q = 2(N − 1)/(N − 2), comme conséquence des propriétés de symétrie pour des petits rayons, nous déduisons l’existence d’extrémales. Finalement, pour 1 < q ≤ 2, nous montrons qu’une extrémale radiale existe pour toute boule.Fil: Fernandez Bonder, Julian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lami Dozo, Enrique Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaGauthier-Villars/Editions Elsevier2004-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/110302Fernandez Bonder, Julian; Lami Dozo, Enrique Jose; Rossi, Julio Daniel; Symmetry properties for the extremals of the Sobolev trace embedding; Gauthier-Villars/Editions Elsevier; Annales de L4institut Henri Poincare-analyse Non Lineaire; 21; 6; 11-2004; 795-8050294-1449CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0294144904000198?via%3Dihubinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.anihpc.2003.09.005info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:16:21Zoai:ri.conicet.gov.ar:11336/110302instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:16:21.346CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Symmetry properties for the extremals of the Sobolev trace embedding |
title |
Symmetry properties for the extremals of the Sobolev trace embedding |
spellingShingle |
Symmetry properties for the extremals of the Sobolev trace embedding Fernandez Bonder, Julian NONLINEAR BOUNDARY CONDITIONS SOBOLEV TRACE EMBEDDING |
title_short |
Symmetry properties for the extremals of the Sobolev trace embedding |
title_full |
Symmetry properties for the extremals of the Sobolev trace embedding |
title_fullStr |
Symmetry properties for the extremals of the Sobolev trace embedding |
title_full_unstemmed |
Symmetry properties for the extremals of the Sobolev trace embedding |
title_sort |
Symmetry properties for the extremals of the Sobolev trace embedding |
dc.creator.none.fl_str_mv |
Fernandez Bonder, Julian Lami Dozo, Enrique Jose Rossi, Julio Daniel |
author |
Fernandez Bonder, Julian |
author_facet |
Fernandez Bonder, Julian Lami Dozo, Enrique Jose Rossi, Julio Daniel |
author_role |
author |
author2 |
Lami Dozo, Enrique Jose Rossi, Julio Daniel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
NONLINEAR BOUNDARY CONDITIONS SOBOLEV TRACE EMBEDDING |
topic |
NONLINEAR BOUNDARY CONDITIONS SOBOLEV TRACE EMBEDDING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this article we study symmetry properties of the extremals for the Sobolev trace embedding H1(B(0, µ)) ,→ Lq(∂B(0, µ)) with 1 ≤ q ≤2(N − 1)/(N − 2) for different values of µ. These extremals u are solutions of the problem {∆u = u in B(0, µ), ∂u_∂η = λ|u|q−2u on ∂B(0, µ). We find that, for 1 ≤ q < 2(N − 1)/(N − 2), there exists a unique normalized extremal u, which is positive and has to be radial, for µ small enough. For the critical case, q = 2(N−1)/(N−2), as a consequence of the symmetry properties for small balls, we conclude the existence of radial extremals. Finally, for 1 < q ≤ 2, we show that a radial extremal exists for every ball. Dans cet article nous étudions des propriétés de symétrie des extrémales de l’immersion de Sobolev H1(B(0, µ)) →Lq (∂B(0, µ)), où 1 q 2(N − 1)/(N − 2) en fonction du rayon µ. Ces extrémales sont solutions du problème {∆= u dans B(0, µ), ∂u_∂η = λ|u| q−2u sur ∂B(0, µ). Nous trouvons que, pour 1 ≤ q < 2(N − 1)/(N − 2), il existe une extrémale normalisée unique u, qui est positive et radiale, pour µ suffisamment petite. Dans le cas critique q = 2(N − 1)/(N − 2), comme conséquence des propriétés de symétrie pour des petits rayons, nous déduisons l’existence d’extrémales. Finalement, pour 1 < q ≤ 2, nous montrons qu’une extrémale radiale existe pour toute boule. Fil: Fernandez Bonder, Julian. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Lami Dozo, Enrique Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina |
description |
In this article we study symmetry properties of the extremals for the Sobolev trace embedding H1(B(0, µ)) ,→ Lq(∂B(0, µ)) with 1 ≤ q ≤2(N − 1)/(N − 2) for different values of µ. These extremals u are solutions of the problem {∆u = u in B(0, µ), ∂u_∂η = λ|u|q−2u on ∂B(0, µ). We find that, for 1 ≤ q < 2(N − 1)/(N − 2), there exists a unique normalized extremal u, which is positive and has to be radial, for µ small enough. For the critical case, q = 2(N−1)/(N−2), as a consequence of the symmetry properties for small balls, we conclude the existence of radial extremals. Finally, for 1 < q ≤ 2, we show that a radial extremal exists for every ball. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/110302 Fernandez Bonder, Julian; Lami Dozo, Enrique Jose; Rossi, Julio Daniel; Symmetry properties for the extremals of the Sobolev trace embedding; Gauthier-Villars/Editions Elsevier; Annales de L4institut Henri Poincare-analyse Non Lineaire; 21; 6; 11-2004; 795-805 0294-1449 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/110302 |
identifier_str_mv |
Fernandez Bonder, Julian; Lami Dozo, Enrique Jose; Rossi, Julio Daniel; Symmetry properties for the extremals of the Sobolev trace embedding; Gauthier-Villars/Editions Elsevier; Annales de L4institut Henri Poincare-analyse Non Lineaire; 21; 6; 11-2004; 795-805 0294-1449 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0294144904000198?via%3Dihub info:eu-repo/semantics/altIdentifier/doi/10.1016/j.anihpc.2003.09.005 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Gauthier-Villars/Editions Elsevier |
publisher.none.fl_str_mv |
Gauthier-Villars/Editions Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980889077743616 |
score |
12.993085 |