The behavior of the best Sobolev trace constant and extremals in thin domains
- Autores
- Fernández Bonder, J.; Martínez, S.; Rossi, J.D.
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we study the asymptotic behavior of the best Sobolev trace constant and extremals for the immersion W1,p(Ω) Lq(∂Ω) in a bounded smooth domain when it is contracted in one direction. We find that the limit problem, when rescaled in a suitable way, is a Sobolev-type immersion in weighted spaces over a projection of Ω, W1,p(P(Ω), α) Lq(P(Ω), β). For the special case p = q, this problem leads to an eigenvalue problem with a nonlinear boundary condition. We also study the convergence of the eigenvalues and eigenvectors in this case. © 2003 Elsevier Inc. All rights reserved.
Fil:Fernández Bonder, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Martínez, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Differ. Equ. 2004;198(1):129-148
- Materia
-
Eigenvalue problems
Nonlinear boundary conditions
p-Laplacian
Sobolev trace constants - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00220396_v198_n1_p129_FernandezBonder
Ver los metadatos del registro completo
id |
BDUBAFCEN_055848e1053028b1ac2139810d7a6af5 |
---|---|
oai_identifier_str |
paperaa:paper_00220396_v198_n1_p129_FernandezBonder |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
The behavior of the best Sobolev trace constant and extremals in thin domainsFernández Bonder, J.Martínez, S.Rossi, J.D.Eigenvalue problemsNonlinear boundary conditionsp-LaplacianSobolev trace constantsIn this paper, we study the asymptotic behavior of the best Sobolev trace constant and extremals for the immersion W1,p(Ω) Lq(∂Ω) in a bounded smooth domain when it is contracted in one direction. We find that the limit problem, when rescaled in a suitable way, is a Sobolev-type immersion in weighted spaces over a projection of Ω, W1,p(P(Ω), α) Lq(P(Ω), β). For the special case p = q, this problem leads to an eigenvalue problem with a nonlinear boundary condition. We also study the convergence of the eigenvalues and eigenvectors in this case. © 2003 Elsevier Inc. All rights reserved.Fil:Fernández Bonder, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Martínez, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2004info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00220396_v198_n1_p129_FernandezBonderJ. Differ. Equ. 2004;198(1):129-148reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-18T10:09:16Zpaperaa:paper_00220396_v198_n1_p129_FernandezBonderInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-18 10:09:17.971Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
The behavior of the best Sobolev trace constant and extremals in thin domains |
title |
The behavior of the best Sobolev trace constant and extremals in thin domains |
spellingShingle |
The behavior of the best Sobolev trace constant and extremals in thin domains Fernández Bonder, J. Eigenvalue problems Nonlinear boundary conditions p-Laplacian Sobolev trace constants |
title_short |
The behavior of the best Sobolev trace constant and extremals in thin domains |
title_full |
The behavior of the best Sobolev trace constant and extremals in thin domains |
title_fullStr |
The behavior of the best Sobolev trace constant and extremals in thin domains |
title_full_unstemmed |
The behavior of the best Sobolev trace constant and extremals in thin domains |
title_sort |
The behavior of the best Sobolev trace constant and extremals in thin domains |
dc.creator.none.fl_str_mv |
Fernández Bonder, J. Martínez, S. Rossi, J.D. |
author |
Fernández Bonder, J. |
author_facet |
Fernández Bonder, J. Martínez, S. Rossi, J.D. |
author_role |
author |
author2 |
Martínez, S. Rossi, J.D. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Eigenvalue problems Nonlinear boundary conditions p-Laplacian Sobolev trace constants |
topic |
Eigenvalue problems Nonlinear boundary conditions p-Laplacian Sobolev trace constants |
dc.description.none.fl_txt_mv |
In this paper, we study the asymptotic behavior of the best Sobolev trace constant and extremals for the immersion W1,p(Ω) Lq(∂Ω) in a bounded smooth domain when it is contracted in one direction. We find that the limit problem, when rescaled in a suitable way, is a Sobolev-type immersion in weighted spaces over a projection of Ω, W1,p(P(Ω), α) Lq(P(Ω), β). For the special case p = q, this problem leads to an eigenvalue problem with a nonlinear boundary condition. We also study the convergence of the eigenvalues and eigenvectors in this case. © 2003 Elsevier Inc. All rights reserved. Fil:Fernández Bonder, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Martínez, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
In this paper, we study the asymptotic behavior of the best Sobolev trace constant and extremals for the immersion W1,p(Ω) Lq(∂Ω) in a bounded smooth domain when it is contracted in one direction. We find that the limit problem, when rescaled in a suitable way, is a Sobolev-type immersion in weighted spaces over a projection of Ω, W1,p(P(Ω), α) Lq(P(Ω), β). For the special case p = q, this problem leads to an eigenvalue problem with a nonlinear boundary condition. We also study the convergence of the eigenvalues and eigenvectors in this case. © 2003 Elsevier Inc. All rights reserved. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00220396_v198_n1_p129_FernandezBonder |
url |
http://hdl.handle.net/20.500.12110/paper_00220396_v198_n1_p129_FernandezBonder |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Differ. Equ. 2004;198(1):129-148 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1843608735653560320 |
score |
13.001348 |