The best Sobolev trace constant in domains with holes for critical or subcritical exponents
- Autores
- Fernandezbonder, J.; Orive, R.; Rossi, J.D.
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we study the best constant in the Sobolev trace embedding H1 (Ω) → Lq(∂Ω) in a bounded smooth domain for 1 < q ≤ 2+ = 2(N - 1)/(N - 2), that is, critical or subcritical q. First, we consider a domain with periodically distributed holes inside which we impose that the involved functions vanish. There exists a critical size of the holes for which the limit problem has an extra term. For sizes larger than critical the best trace constant diverges to infinity and for sizes smaller than critical it converges to the best constant in the domain without holes. Also, we study the problem with the holes located on the boundary of the domain. In this case another critical exists and its extra term appears on the boundary. Copyright © Australian Mathematical Society 2007.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- ANZIAM J. 2008;49(2):213-230
- Materia
-
homogenization
nonlinear boundary conditions
Sobolev trace embedding. - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_14461811_v49_n2_p213_Fernandezbonder
Ver los metadatos del registro completo
id |
BDUBAFCEN_889947dfbbc0a1d3a6b72d3cc3fa063a |
---|---|
oai_identifier_str |
paperaa:paper_14461811_v49_n2_p213_Fernandezbonder |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
The best Sobolev trace constant in domains with holes for critical or subcritical exponentsFernandezbonder, J.Orive, R.Rossi, J.D.homogenizationnonlinear boundary conditionsSobolev trace embedding.In this paper we study the best constant in the Sobolev trace embedding H1 (Ω) → Lq(∂Ω) in a bounded smooth domain for 1 < q ≤ 2+ = 2(N - 1)/(N - 2), that is, critical or subcritical q. First, we consider a domain with periodically distributed holes inside which we impose that the involved functions vanish. There exists a critical size of the holes for which the limit problem has an extra term. For sizes larger than critical the best trace constant diverges to infinity and for sizes smaller than critical it converges to the best constant in the domain without holes. Also, we study the problem with the holes located on the boundary of the domain. In this case another critical exists and its extra term appears on the boundary. Copyright © Australian Mathematical Society 2007.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_14461811_v49_n2_p213_FernandezbonderANZIAM J. 2008;49(2):213-230reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:49Zpaperaa:paper_14461811_v49_n2_p213_FernandezbonderInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:50.488Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
The best Sobolev trace constant in domains with holes for critical or subcritical exponents |
title |
The best Sobolev trace constant in domains with holes for critical or subcritical exponents |
spellingShingle |
The best Sobolev trace constant in domains with holes for critical or subcritical exponents Fernandezbonder, J. homogenization nonlinear boundary conditions Sobolev trace embedding. |
title_short |
The best Sobolev trace constant in domains with holes for critical or subcritical exponents |
title_full |
The best Sobolev trace constant in domains with holes for critical or subcritical exponents |
title_fullStr |
The best Sobolev trace constant in domains with holes for critical or subcritical exponents |
title_full_unstemmed |
The best Sobolev trace constant in domains with holes for critical or subcritical exponents |
title_sort |
The best Sobolev trace constant in domains with holes for critical or subcritical exponents |
dc.creator.none.fl_str_mv |
Fernandezbonder, J. Orive, R. Rossi, J.D. |
author |
Fernandezbonder, J. |
author_facet |
Fernandezbonder, J. Orive, R. Rossi, J.D. |
author_role |
author |
author2 |
Orive, R. Rossi, J.D. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
homogenization nonlinear boundary conditions Sobolev trace embedding. |
topic |
homogenization nonlinear boundary conditions Sobolev trace embedding. |
dc.description.none.fl_txt_mv |
In this paper we study the best constant in the Sobolev trace embedding H1 (Ω) → Lq(∂Ω) in a bounded smooth domain for 1 < q ≤ 2+ = 2(N - 1)/(N - 2), that is, critical or subcritical q. First, we consider a domain with periodically distributed holes inside which we impose that the involved functions vanish. There exists a critical size of the holes for which the limit problem has an extra term. For sizes larger than critical the best trace constant diverges to infinity and for sizes smaller than critical it converges to the best constant in the domain without holes. Also, we study the problem with the holes located on the boundary of the domain. In this case another critical exists and its extra term appears on the boundary. Copyright © Australian Mathematical Society 2007. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
In this paper we study the best constant in the Sobolev trace embedding H1 (Ω) → Lq(∂Ω) in a bounded smooth domain for 1 < q ≤ 2+ = 2(N - 1)/(N - 2), that is, critical or subcritical q. First, we consider a domain with periodically distributed holes inside which we impose that the involved functions vanish. There exists a critical size of the holes for which the limit problem has an extra term. For sizes larger than critical the best trace constant diverges to infinity and for sizes smaller than critical it converges to the best constant in the domain without holes. Also, we study the problem with the holes located on the boundary of the domain. In this case another critical exists and its extra term appears on the boundary. Copyright © Australian Mathematical Society 2007. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_14461811_v49_n2_p213_Fernandezbonder |
url |
http://hdl.handle.net/20.500.12110/paper_14461811_v49_n2_p213_Fernandezbonder |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
ANZIAM J. 2008;49(2):213-230 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618732797689856 |
score |
13.070432 |