The best Sobolev trace constant in domains with holes for critical or subcritical exponents

Autores
Fernandezbonder, J.; Orive, R.; Rossi, J.D.
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we study the best constant in the Sobolev trace embedding H1 (Ω) → Lq(∂Ω) in a bounded smooth domain for 1 < q ≤ 2+ = 2(N - 1)/(N - 2), that is, critical or subcritical q. First, we consider a domain with periodically distributed holes inside which we impose that the involved functions vanish. There exists a critical size of the holes for which the limit problem has an extra term. For sizes larger than critical the best trace constant diverges to infinity and for sizes smaller than critical it converges to the best constant in the domain without holes. Also, we study the problem with the holes located on the boundary of the domain. In this case another critical exists and its extra term appears on the boundary. Copyright © Australian Mathematical Society 2007.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
ANZIAM J. 2008;49(2):213-230
Materia
homogenization
nonlinear boundary conditions
Sobolev trace embedding.
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_14461811_v49_n2_p213_Fernandezbonder

id BDUBAFCEN_889947dfbbc0a1d3a6b72d3cc3fa063a
oai_identifier_str paperaa:paper_14461811_v49_n2_p213_Fernandezbonder
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling The best Sobolev trace constant in domains with holes for critical or subcritical exponentsFernandezbonder, J.Orive, R.Rossi, J.D.homogenizationnonlinear boundary conditionsSobolev trace embedding.In this paper we study the best constant in the Sobolev trace embedding H1 (Ω) → Lq(∂Ω) in a bounded smooth domain for 1 &lt; q ≤ 2+ = 2(N - 1)/(N - 2), that is, critical or subcritical q. First, we consider a domain with periodically distributed holes inside which we impose that the involved functions vanish. There exists a critical size of the holes for which the limit problem has an extra term. For sizes larger than critical the best trace constant diverges to infinity and for sizes smaller than critical it converges to the best constant in the domain without holes. Also, we study the problem with the holes located on the boundary of the domain. In this case another critical exists and its extra term appears on the boundary. Copyright © Australian Mathematical Society 2007.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2008info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_14461811_v49_n2_p213_FernandezbonderANZIAM J. 2008;49(2):213-230reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:42:49Zpaperaa:paper_14461811_v49_n2_p213_FernandezbonderInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:42:50.488Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv The best Sobolev trace constant in domains with holes for critical or subcritical exponents
title The best Sobolev trace constant in domains with holes for critical or subcritical exponents
spellingShingle The best Sobolev trace constant in domains with holes for critical or subcritical exponents
Fernandezbonder, J.
homogenization
nonlinear boundary conditions
Sobolev trace embedding.
title_short The best Sobolev trace constant in domains with holes for critical or subcritical exponents
title_full The best Sobolev trace constant in domains with holes for critical or subcritical exponents
title_fullStr The best Sobolev trace constant in domains with holes for critical or subcritical exponents
title_full_unstemmed The best Sobolev trace constant in domains with holes for critical or subcritical exponents
title_sort The best Sobolev trace constant in domains with holes for critical or subcritical exponents
dc.creator.none.fl_str_mv Fernandezbonder, J.
Orive, R.
Rossi, J.D.
author Fernandezbonder, J.
author_facet Fernandezbonder, J.
Orive, R.
Rossi, J.D.
author_role author
author2 Orive, R.
Rossi, J.D.
author2_role author
author
dc.subject.none.fl_str_mv homogenization
nonlinear boundary conditions
Sobolev trace embedding.
topic homogenization
nonlinear boundary conditions
Sobolev trace embedding.
dc.description.none.fl_txt_mv In this paper we study the best constant in the Sobolev trace embedding H1 (Ω) → Lq(∂Ω) in a bounded smooth domain for 1 &lt; q ≤ 2+ = 2(N - 1)/(N - 2), that is, critical or subcritical q. First, we consider a domain with periodically distributed holes inside which we impose that the involved functions vanish. There exists a critical size of the holes for which the limit problem has an extra term. For sizes larger than critical the best trace constant diverges to infinity and for sizes smaller than critical it converges to the best constant in the domain without holes. Also, we study the problem with the holes located on the boundary of the domain. In this case another critical exists and its extra term appears on the boundary. Copyright © Australian Mathematical Society 2007.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description In this paper we study the best constant in the Sobolev trace embedding H1 (Ω) → Lq(∂Ω) in a bounded smooth domain for 1 &lt; q ≤ 2+ = 2(N - 1)/(N - 2), that is, critical or subcritical q. First, we consider a domain with periodically distributed holes inside which we impose that the involved functions vanish. There exists a critical size of the holes for which the limit problem has an extra term. For sizes larger than critical the best trace constant diverges to infinity and for sizes smaller than critical it converges to the best constant in the domain without holes. Also, we study the problem with the holes located on the boundary of the domain. In this case another critical exists and its extra term appears on the boundary. Copyright © Australian Mathematical Society 2007.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_14461811_v49_n2_p213_Fernandezbonder
url http://hdl.handle.net/20.500.12110/paper_14461811_v49_n2_p213_Fernandezbonder
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv ANZIAM J. 2008;49(2):213-230
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618732797689856
score 13.070432