Symmetry properties for the extremals of the Sobolev trace embedding

Autores
Bonder, J.F.; Dozo, E.L.; Rossi, J.D.
Año de publicación
2004
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this article we study symmetry properties of the extremals for the Sobolev trace embedding H1(B(0,μ))→Lq(∂B(0, μ)) with 1≤q≤2(N-1)/(N-2) for different values of μ. These extremals u are solutions of the problem Δu=uinB(0,μ),∂u∂η= λ|u|q-2uon∂B(0,μ). We find that, for 1≤q<2(N-1)/(N-2), there exists a unique normalized extremal u, which is positive and has to be radial, for μ small enough. For the critical case, q=2(N-1)/(N-2), as a consequence of the symmetry properties for small balls, we conclude the existence of radial extremals. Finally, for 1<q≤2, we show that a radial extremal exists for every ball. © 2004 Elsevier SAS. All rights reserved.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
Anna Inst Henri Poincare Annal Anal Non Lineaire 2004;21(6):795-805
Materia
Nonlinear boundary conditions
Sobolev trace embedding
Bessel functions
Boundary value problems
Eigenvalues and eigenfunctions
Mathematical models
Problem solving
Theorem proving
Nonlinear boundary conditions
Sobolev trace embedding
Boundary conditions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_02941449_v21_n6_p795_Bonder

id BDUBAFCEN_6795d46be4c6a5be3e01e4542f57f5b1
oai_identifier_str paperaa:paper_02941449_v21_n6_p795_Bonder
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Symmetry properties for the extremals of the Sobolev trace embeddingBonder, J.F.Dozo, E.L.Rossi, J.D.Nonlinear boundary conditionsSobolev trace embeddingBessel functionsBoundary value problemsEigenvalues and eigenfunctionsMathematical modelsProblem solvingTheorem provingNonlinear boundary conditionsSobolev trace embeddingBoundary conditionsIn this article we study symmetry properties of the extremals for the Sobolev trace embedding H1(B(0,μ))→Lq(∂B(0, μ)) with 1≤q≤2(N-1)/(N-2) for different values of μ. These extremals u are solutions of the problem Δu=uinB(0,μ),∂u∂η= λ|u|q-2uon∂B(0,μ). We find that, for 1≤q&lt;2(N-1)/(N-2), there exists a unique normalized extremal u, which is positive and has to be radial, for μ small enough. For the critical case, q=2(N-1)/(N-2), as a consequence of the symmetry properties for small balls, we conclude the existence of radial extremals. Finally, for 1&lt;q≤2, we show that a radial extremal exists for every ball. © 2004 Elsevier SAS. All rights reserved.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2004info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_02941449_v21_n6_p795_BonderAnna Inst Henri Poincare Annal Anal Non Lineaire 2004;21(6):795-805reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:40Zpaperaa:paper_02941449_v21_n6_p795_BonderInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:42.867Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Symmetry properties for the extremals of the Sobolev trace embedding
title Symmetry properties for the extremals of the Sobolev trace embedding
spellingShingle Symmetry properties for the extremals of the Sobolev trace embedding
Bonder, J.F.
Nonlinear boundary conditions
Sobolev trace embedding
Bessel functions
Boundary value problems
Eigenvalues and eigenfunctions
Mathematical models
Problem solving
Theorem proving
Nonlinear boundary conditions
Sobolev trace embedding
Boundary conditions
title_short Symmetry properties for the extremals of the Sobolev trace embedding
title_full Symmetry properties for the extremals of the Sobolev trace embedding
title_fullStr Symmetry properties for the extremals of the Sobolev trace embedding
title_full_unstemmed Symmetry properties for the extremals of the Sobolev trace embedding
title_sort Symmetry properties for the extremals of the Sobolev trace embedding
dc.creator.none.fl_str_mv Bonder, J.F.
Dozo, E.L.
Rossi, J.D.
author Bonder, J.F.
author_facet Bonder, J.F.
Dozo, E.L.
Rossi, J.D.
author_role author
author2 Dozo, E.L.
Rossi, J.D.
author2_role author
author
dc.subject.none.fl_str_mv Nonlinear boundary conditions
Sobolev trace embedding
Bessel functions
Boundary value problems
Eigenvalues and eigenfunctions
Mathematical models
Problem solving
Theorem proving
Nonlinear boundary conditions
Sobolev trace embedding
Boundary conditions
topic Nonlinear boundary conditions
Sobolev trace embedding
Bessel functions
Boundary value problems
Eigenvalues and eigenfunctions
Mathematical models
Problem solving
Theorem proving
Nonlinear boundary conditions
Sobolev trace embedding
Boundary conditions
dc.description.none.fl_txt_mv In this article we study symmetry properties of the extremals for the Sobolev trace embedding H1(B(0,μ))→Lq(∂B(0, μ)) with 1≤q≤2(N-1)/(N-2) for different values of μ. These extremals u are solutions of the problem Δu=uinB(0,μ),∂u∂η= λ|u|q-2uon∂B(0,μ). We find that, for 1≤q&lt;2(N-1)/(N-2), there exists a unique normalized extremal u, which is positive and has to be radial, for μ small enough. For the critical case, q=2(N-1)/(N-2), as a consequence of the symmetry properties for small balls, we conclude the existence of radial extremals. Finally, for 1&lt;q≤2, we show that a radial extremal exists for every ball. © 2004 Elsevier SAS. All rights reserved.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description In this article we study symmetry properties of the extremals for the Sobolev trace embedding H1(B(0,μ))→Lq(∂B(0, μ)) with 1≤q≤2(N-1)/(N-2) for different values of μ. These extremals u are solutions of the problem Δu=uinB(0,μ),∂u∂η= λ|u|q-2uon∂B(0,μ). We find that, for 1≤q&lt;2(N-1)/(N-2), there exists a unique normalized extremal u, which is positive and has to be radial, for μ small enough. For the critical case, q=2(N-1)/(N-2), as a consequence of the symmetry properties for small balls, we conclude the existence of radial extremals. Finally, for 1&lt;q≤2, we show that a radial extremal exists for every ball. © 2004 Elsevier SAS. All rights reserved.
publishDate 2004
dc.date.none.fl_str_mv 2004
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_02941449_v21_n6_p795_Bonder
url http://hdl.handle.net/20.500.12110/paper_02941449_v21_n6_p795_Bonder
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv Anna Inst Henri Poincare Annal Anal Non Lineaire 2004;21(6):795-805
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1842340706320908288
score 12.623145