Symmetry properties for the extremals of the Sobolev trace embedding
- Autores
- Bonder, J.F.; Dozo, E.L.; Rossi, J.D.
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article we study symmetry properties of the extremals for the Sobolev trace embedding H1(B(0,μ))→Lq(∂B(0, μ)) with 1≤q≤2(N-1)/(N-2) for different values of μ. These extremals u are solutions of the problem Δu=uinB(0,μ),∂u∂η= λ|u|q-2uon∂B(0,μ). We find that, for 1≤q<2(N-1)/(N-2), there exists a unique normalized extremal u, which is positive and has to be radial, for μ small enough. For the critical case, q=2(N-1)/(N-2), as a consequence of the symmetry properties for small balls, we conclude the existence of radial extremals. Finally, for 1<q≤2, we show that a radial extremal exists for every ball. © 2004 Elsevier SAS. All rights reserved.
Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Anna Inst Henri Poincare Annal Anal Non Lineaire 2004;21(6):795-805
- Materia
-
Nonlinear boundary conditions
Sobolev trace embedding
Bessel functions
Boundary value problems
Eigenvalues and eigenfunctions
Mathematical models
Problem solving
Theorem proving
Nonlinear boundary conditions
Sobolev trace embedding
Boundary conditions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_02941449_v21_n6_p795_Bonder
Ver los metadatos del registro completo
id |
BDUBAFCEN_6795d46be4c6a5be3e01e4542f57f5b1 |
---|---|
oai_identifier_str |
paperaa:paper_02941449_v21_n6_p795_Bonder |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Symmetry properties for the extremals of the Sobolev trace embeddingBonder, J.F.Dozo, E.L.Rossi, J.D.Nonlinear boundary conditionsSobolev trace embeddingBessel functionsBoundary value problemsEigenvalues and eigenfunctionsMathematical modelsProblem solvingTheorem provingNonlinear boundary conditionsSobolev trace embeddingBoundary conditionsIn this article we study symmetry properties of the extremals for the Sobolev trace embedding H1(B(0,μ))→Lq(∂B(0, μ)) with 1≤q≤2(N-1)/(N-2) for different values of μ. These extremals u are solutions of the problem Δu=uinB(0,μ),∂u∂η= λ|u|q-2uon∂B(0,μ). We find that, for 1≤q<2(N-1)/(N-2), there exists a unique normalized extremal u, which is positive and has to be radial, for μ small enough. For the critical case, q=2(N-1)/(N-2), as a consequence of the symmetry properties for small balls, we conclude the existence of radial extremals. Finally, for 1<q≤2, we show that a radial extremal exists for every ball. © 2004 Elsevier SAS. All rights reserved.Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2004info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_02941449_v21_n6_p795_BonderAnna Inst Henri Poincare Annal Anal Non Lineaire 2004;21(6):795-805reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-04T09:48:40Zpaperaa:paper_02941449_v21_n6_p795_BonderInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-04 09:48:42.867Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Symmetry properties for the extremals of the Sobolev trace embedding |
title |
Symmetry properties for the extremals of the Sobolev trace embedding |
spellingShingle |
Symmetry properties for the extremals of the Sobolev trace embedding Bonder, J.F. Nonlinear boundary conditions Sobolev trace embedding Bessel functions Boundary value problems Eigenvalues and eigenfunctions Mathematical models Problem solving Theorem proving Nonlinear boundary conditions Sobolev trace embedding Boundary conditions |
title_short |
Symmetry properties for the extremals of the Sobolev trace embedding |
title_full |
Symmetry properties for the extremals of the Sobolev trace embedding |
title_fullStr |
Symmetry properties for the extremals of the Sobolev trace embedding |
title_full_unstemmed |
Symmetry properties for the extremals of the Sobolev trace embedding |
title_sort |
Symmetry properties for the extremals of the Sobolev trace embedding |
dc.creator.none.fl_str_mv |
Bonder, J.F. Dozo, E.L. Rossi, J.D. |
author |
Bonder, J.F. |
author_facet |
Bonder, J.F. Dozo, E.L. Rossi, J.D. |
author_role |
author |
author2 |
Dozo, E.L. Rossi, J.D. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Nonlinear boundary conditions Sobolev trace embedding Bessel functions Boundary value problems Eigenvalues and eigenfunctions Mathematical models Problem solving Theorem proving Nonlinear boundary conditions Sobolev trace embedding Boundary conditions |
topic |
Nonlinear boundary conditions Sobolev trace embedding Bessel functions Boundary value problems Eigenvalues and eigenfunctions Mathematical models Problem solving Theorem proving Nonlinear boundary conditions Sobolev trace embedding Boundary conditions |
dc.description.none.fl_txt_mv |
In this article we study symmetry properties of the extremals for the Sobolev trace embedding H1(B(0,μ))→Lq(∂B(0, μ)) with 1≤q≤2(N-1)/(N-2) for different values of μ. These extremals u are solutions of the problem Δu=uinB(0,μ),∂u∂η= λ|u|q-2uon∂B(0,μ). We find that, for 1≤q<2(N-1)/(N-2), there exists a unique normalized extremal u, which is positive and has to be radial, for μ small enough. For the critical case, q=2(N-1)/(N-2), as a consequence of the symmetry properties for small balls, we conclude the existence of radial extremals. Finally, for 1<q≤2, we show that a radial extremal exists for every ball. © 2004 Elsevier SAS. All rights reserved. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
In this article we study symmetry properties of the extremals for the Sobolev trace embedding H1(B(0,μ))→Lq(∂B(0, μ)) with 1≤q≤2(N-1)/(N-2) for different values of μ. These extremals u are solutions of the problem Δu=uinB(0,μ),∂u∂η= λ|u|q-2uon∂B(0,μ). We find that, for 1≤q<2(N-1)/(N-2), there exists a unique normalized extremal u, which is positive and has to be radial, for μ small enough. For the critical case, q=2(N-1)/(N-2), as a consequence of the symmetry properties for small balls, we conclude the existence of radial extremals. Finally, for 1<q≤2, we show that a radial extremal exists for every ball. © 2004 Elsevier SAS. All rights reserved. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_02941449_v21_n6_p795_Bonder |
url |
http://hdl.handle.net/20.500.12110/paper_02941449_v21_n6_p795_Bonder |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Anna Inst Henri Poincare Annal Anal Non Lineaire 2004;21(6):795-805 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1842340706320908288 |
score |
12.623145 |