The best Sobolev trace constant in periodic media for critical and subcritical exponents
- Autores
- Fernandez Bonder, Julian; Orive, Rafael; Rossi, Julio Daniel
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we study homogenisation problems for Sobolev trace embedding H1(Ω) ↪ Lq(∂Ω) in a bounded smooth domain. When q = 2 this leads to a Steklov-like eigenvalue problem. We deal with the best constant of the Sobolev trace embedding in rapidly oscillating periodic media, and we consider H1 and Lq spaces with weights that are periodic in space. We find that extremals for these embeddings converge to a solution of a homogenised limit problem, and the best trace constant converges to a homogenised best trace constant. Our results are in fact more general; we can also consider general operators of the form aɛ(x, ∇u) with non-linear Neumann boundary conditions. In particular, we can deal with the embedding W1,p(Ω) ↪ Lq(∂Ω).
Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Orive, Rafael. Universidad Autónoma de Madrid; España
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
HOMOGENIZATION
NONLINEAR BOUNDARY CONDITIONS
SOBOLEV TRACE EMBEDDING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/154860
Ver los metadatos del registro completo
id |
CONICETDig_130f367362bf71f019b07260a477c1b3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/154860 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The best Sobolev trace constant in periodic media for critical and subcritical exponentsFernandez Bonder, JulianOrive, RafaelRossi, Julio DanielHOMOGENIZATIONNONLINEAR BOUNDARY CONDITIONSSOBOLEV TRACE EMBEDDINGhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we study homogenisation problems for Sobolev trace embedding H1(Ω) ↪ Lq(∂Ω) in a bounded smooth domain. When q = 2 this leads to a Steklov-like eigenvalue problem. We deal with the best constant of the Sobolev trace embedding in rapidly oscillating periodic media, and we consider H1 and Lq spaces with weights that are periodic in space. We find that extremals for these embeddings converge to a solution of a homogenised limit problem, and the best trace constant converges to a homogenised best trace constant. Our results are in fact more general; we can also consider general operators of the form aɛ(x, ∇u) with non-linear Neumann boundary conditions. In particular, we can deal with the embedding W1,p(Ω) ↪ Lq(∂Ω).Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Orive, Rafael. Universidad Autónoma de Madrid; EspañaFil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaCambridge University Press2009-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/154860Fernandez Bonder, Julian; Orive, Rafael; Rossi, Julio Daniel; The best Sobolev trace constant in periodic media for critical and subcritical exponents; Cambridge University Press; Glasgow Mathematical Journal; 51; 3; 9-2009; 619-6300017-0895CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1017/S0017089509990048info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:56:18Zoai:ri.conicet.gov.ar:11336/154860instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:56:19.117CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The best Sobolev trace constant in periodic media for critical and subcritical exponents |
title |
The best Sobolev trace constant in periodic media for critical and subcritical exponents |
spellingShingle |
The best Sobolev trace constant in periodic media for critical and subcritical exponents Fernandez Bonder, Julian HOMOGENIZATION NONLINEAR BOUNDARY CONDITIONS SOBOLEV TRACE EMBEDDING |
title_short |
The best Sobolev trace constant in periodic media for critical and subcritical exponents |
title_full |
The best Sobolev trace constant in periodic media for critical and subcritical exponents |
title_fullStr |
The best Sobolev trace constant in periodic media for critical and subcritical exponents |
title_full_unstemmed |
The best Sobolev trace constant in periodic media for critical and subcritical exponents |
title_sort |
The best Sobolev trace constant in periodic media for critical and subcritical exponents |
dc.creator.none.fl_str_mv |
Fernandez Bonder, Julian Orive, Rafael Rossi, Julio Daniel |
author |
Fernandez Bonder, Julian |
author_facet |
Fernandez Bonder, Julian Orive, Rafael Rossi, Julio Daniel |
author_role |
author |
author2 |
Orive, Rafael Rossi, Julio Daniel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
HOMOGENIZATION NONLINEAR BOUNDARY CONDITIONS SOBOLEV TRACE EMBEDDING |
topic |
HOMOGENIZATION NONLINEAR BOUNDARY CONDITIONS SOBOLEV TRACE EMBEDDING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we study homogenisation problems for Sobolev trace embedding H1(Ω) ↪ Lq(∂Ω) in a bounded smooth domain. When q = 2 this leads to a Steklov-like eigenvalue problem. We deal with the best constant of the Sobolev trace embedding in rapidly oscillating periodic media, and we consider H1 and Lq spaces with weights that are periodic in space. We find that extremals for these embeddings converge to a solution of a homogenised limit problem, and the best trace constant converges to a homogenised best trace constant. Our results are in fact more general; we can also consider general operators of the form aɛ(x, ∇u) with non-linear Neumann boundary conditions. In particular, we can deal with the embedding W1,p(Ω) ↪ Lq(∂Ω). Fil: Fernandez Bonder, Julian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Orive, Rafael. Universidad Autónoma de Madrid; España Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In this paper we study homogenisation problems for Sobolev trace embedding H1(Ω) ↪ Lq(∂Ω) in a bounded smooth domain. When q = 2 this leads to a Steklov-like eigenvalue problem. We deal with the best constant of the Sobolev trace embedding in rapidly oscillating periodic media, and we consider H1 and Lq spaces with weights that are periodic in space. We find that extremals for these embeddings converge to a solution of a homogenised limit problem, and the best trace constant converges to a homogenised best trace constant. Our results are in fact more general; we can also consider general operators of the form aɛ(x, ∇u) with non-linear Neumann boundary conditions. In particular, we can deal with the embedding W1,p(Ω) ↪ Lq(∂Ω). |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/154860 Fernandez Bonder, Julian; Orive, Rafael; Rossi, Julio Daniel; The best Sobolev trace constant in periodic media for critical and subcritical exponents; Cambridge University Press; Glasgow Mathematical Journal; 51; 3; 9-2009; 619-630 0017-0895 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/154860 |
identifier_str_mv |
Fernandez Bonder, Julian; Orive, Rafael; Rossi, Julio Daniel; The best Sobolev trace constant in periodic media for critical and subcritical exponents; Cambridge University Press; Glasgow Mathematical Journal; 51; 3; 9-2009; 619-630 0017-0895 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1017/S0017089509990048 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cambridge University Press |
publisher.none.fl_str_mv |
Cambridge University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613692591702016 |
score |
13.070432 |