Size- And temperature-dependent magnetization of iron nanoclusters

Autores
Dos Santos Mendez, Gonzalo Joaquín; Aparicio, Romina Marcela; Linares, D.; Miranda, Enrique Nestor; Tranchida, J.; Pastor, G. M.; Bringa, Eduardo Marcial
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The magnetic behavior of bcc iron nanoclusters, with diameters between 2 and 8 nm, is investigated by means of spin dynamics simulations coupled to molecular dynamics, using a distance-dependent exchange interaction. Finite-size effects in the total magnetization as well as the influence of the free surface and the surface/core proportion of the nanoclusters are analyzed in detail for a wide temperature range, going beyond the cluster and bulk Curie temperatures. Comparison is made with experimental data and with theoretical models based on the mean-field Ising model adapted to small clusters, and taking into account the influence of low coordinated spins at free surfaces. Our results for the temperature dependence of the average magnetization per atom MT, including the thermalization of the transnational lattice degrees of freedom, are in very good agreement with available experimental measurements on small Fe nanoclusters. In contrast, significant discrepancies with experiment are observed if the translational degrees of freedom are artificially frozen. The finite-size effects on MT are found to be particularly important near the cluster Curie temperature. Simulated magnetization above the Curie temperature scales with cluster size as predicted by models assuming short-range magnetic ordering. Analytical approximations to the magnetization as a function of temperature and size are proposed.
Fil: Dos Santos Mendez, Gonzalo Joaquín. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Aparicio, Romina Marcela. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Linares, D.. Universidad Nacional de San Luis. Facultad de Ciencias Físico- Matemáticas y Naturales; Argentina
Fil: Miranda, Enrique Nestor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
Fil: Tranchida, J.. Sandia National Laboratory; Estados Unidos
Fil: Pastor, G. M.. University Of Kasel; Alemania
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Mayor; Chile
Materia
MAGNETIZATION
NANOPARTICLES
SPIN DYNAMICS
MOLECULAR DYNAMICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/137026

id CONICETDig_3eca27553287d426242b72ad5779f427
oai_identifier_str oai:ri.conicet.gov.ar:11336/137026
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Size- And temperature-dependent magnetization of iron nanoclustersDos Santos Mendez, Gonzalo JoaquínAparicio, Romina MarcelaLinares, D.Miranda, Enrique NestorTranchida, J.Pastor, G. M.Bringa, Eduardo MarcialMAGNETIZATIONNANOPARTICLESSPIN DYNAMICSMOLECULAR DYNAMICShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The magnetic behavior of bcc iron nanoclusters, with diameters between 2 and 8 nm, is investigated by means of spin dynamics simulations coupled to molecular dynamics, using a distance-dependent exchange interaction. Finite-size effects in the total magnetization as well as the influence of the free surface and the surface/core proportion of the nanoclusters are analyzed in detail for a wide temperature range, going beyond the cluster and bulk Curie temperatures. Comparison is made with experimental data and with theoretical models based on the mean-field Ising model adapted to small clusters, and taking into account the influence of low coordinated spins at free surfaces. Our results for the temperature dependence of the average magnetization per atom MT, including the thermalization of the transnational lattice degrees of freedom, are in very good agreement with available experimental measurements on small Fe nanoclusters. In contrast, significant discrepancies with experiment are observed if the translational degrees of freedom are artificially frozen. The finite-size effects on MT are found to be particularly important near the cluster Curie temperature. Simulated magnetization above the Curie temperature scales with cluster size as predicted by models assuming short-range magnetic ordering. Analytical approximations to the magnetization as a function of temperature and size are proposed.Fil: Dos Santos Mendez, Gonzalo Joaquín. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Aparicio, Romina Marcela. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Linares, D.. Universidad Nacional de San Luis. Facultad de Ciencias Físico- Matemáticas y Naturales; ArgentinaFil: Miranda, Enrique Nestor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Tranchida, J.. Sandia National Laboratory; Estados UnidosFil: Pastor, G. M.. University Of Kasel; AlemaniaFil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Mayor; ChileAmerican Physical Society2020-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/137026Dos Santos Mendez, Gonzalo Joaquín; Aparicio, Romina Marcela; Linares, D.; Miranda, Enrique Nestor; Tranchida, J.; et al.; Size- And temperature-dependent magnetization of iron nanoclusters; American Physical Society; Physical Review B; 102; 18; 11-2020; 1-152469-99502469-9969CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.102.184426info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:39:49Zoai:ri.conicet.gov.ar:11336/137026instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:39:50.073CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Size- And temperature-dependent magnetization of iron nanoclusters
title Size- And temperature-dependent magnetization of iron nanoclusters
spellingShingle Size- And temperature-dependent magnetization of iron nanoclusters
Dos Santos Mendez, Gonzalo Joaquín
MAGNETIZATION
NANOPARTICLES
SPIN DYNAMICS
MOLECULAR DYNAMICS
title_short Size- And temperature-dependent magnetization of iron nanoclusters
title_full Size- And temperature-dependent magnetization of iron nanoclusters
title_fullStr Size- And temperature-dependent magnetization of iron nanoclusters
title_full_unstemmed Size- And temperature-dependent magnetization of iron nanoclusters
title_sort Size- And temperature-dependent magnetization of iron nanoclusters
dc.creator.none.fl_str_mv Dos Santos Mendez, Gonzalo Joaquín
Aparicio, Romina Marcela
Linares, D.
Miranda, Enrique Nestor
Tranchida, J.
Pastor, G. M.
Bringa, Eduardo Marcial
author Dos Santos Mendez, Gonzalo Joaquín
author_facet Dos Santos Mendez, Gonzalo Joaquín
Aparicio, Romina Marcela
Linares, D.
Miranda, Enrique Nestor
Tranchida, J.
Pastor, G. M.
Bringa, Eduardo Marcial
author_role author
author2 Aparicio, Romina Marcela
Linares, D.
Miranda, Enrique Nestor
Tranchida, J.
Pastor, G. M.
Bringa, Eduardo Marcial
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv MAGNETIZATION
NANOPARTICLES
SPIN DYNAMICS
MOLECULAR DYNAMICS
topic MAGNETIZATION
NANOPARTICLES
SPIN DYNAMICS
MOLECULAR DYNAMICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The magnetic behavior of bcc iron nanoclusters, with diameters between 2 and 8 nm, is investigated by means of spin dynamics simulations coupled to molecular dynamics, using a distance-dependent exchange interaction. Finite-size effects in the total magnetization as well as the influence of the free surface and the surface/core proportion of the nanoclusters are analyzed in detail for a wide temperature range, going beyond the cluster and bulk Curie temperatures. Comparison is made with experimental data and with theoretical models based on the mean-field Ising model adapted to small clusters, and taking into account the influence of low coordinated spins at free surfaces. Our results for the temperature dependence of the average magnetization per atom MT, including the thermalization of the transnational lattice degrees of freedom, are in very good agreement with available experimental measurements on small Fe nanoclusters. In contrast, significant discrepancies with experiment are observed if the translational degrees of freedom are artificially frozen. The finite-size effects on MT are found to be particularly important near the cluster Curie temperature. Simulated magnetization above the Curie temperature scales with cluster size as predicted by models assuming short-range magnetic ordering. Analytical approximations to the magnetization as a function of temperature and size are proposed.
Fil: Dos Santos Mendez, Gonzalo Joaquín. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Aparicio, Romina Marcela. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Linares, D.. Universidad Nacional de San Luis. Facultad de Ciencias Físico- Matemáticas y Naturales; Argentina
Fil: Miranda, Enrique Nestor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
Fil: Tranchida, J.. Sandia National Laboratory; Estados Unidos
Fil: Pastor, G. M.. University Of Kasel; Alemania
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Mayor; Chile
description The magnetic behavior of bcc iron nanoclusters, with diameters between 2 and 8 nm, is investigated by means of spin dynamics simulations coupled to molecular dynamics, using a distance-dependent exchange interaction. Finite-size effects in the total magnetization as well as the influence of the free surface and the surface/core proportion of the nanoclusters are analyzed in detail for a wide temperature range, going beyond the cluster and bulk Curie temperatures. Comparison is made with experimental data and with theoretical models based on the mean-field Ising model adapted to small clusters, and taking into account the influence of low coordinated spins at free surfaces. Our results for the temperature dependence of the average magnetization per atom MT, including the thermalization of the transnational lattice degrees of freedom, are in very good agreement with available experimental measurements on small Fe nanoclusters. In contrast, significant discrepancies with experiment are observed if the translational degrees of freedom are artificially frozen. The finite-size effects on MT are found to be particularly important near the cluster Curie temperature. Simulated magnetization above the Curie temperature scales with cluster size as predicted by models assuming short-range magnetic ordering. Analytical approximations to the magnetization as a function of temperature and size are proposed.
publishDate 2020
dc.date.none.fl_str_mv 2020-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/137026
Dos Santos Mendez, Gonzalo Joaquín; Aparicio, Romina Marcela; Linares, D.; Miranda, Enrique Nestor; Tranchida, J.; et al.; Size- And temperature-dependent magnetization of iron nanoclusters; American Physical Society; Physical Review B; 102; 18; 11-2020; 1-15
2469-9950
2469-9969
CONICET Digital
CONICET
url http://hdl.handle.net/11336/137026
identifier_str_mv Dos Santos Mendez, Gonzalo Joaquín; Aparicio, Romina Marcela; Linares, D.; Miranda, Enrique Nestor; Tranchida, J.; et al.; Size- And temperature-dependent magnetization of iron nanoclusters; American Physical Society; Physical Review B; 102; 18; 11-2020; 1-15
2469-9950
2469-9969
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.102.184426
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082885981831168
score 12.891075