Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation
- Autores
- Aron, Camille; Barci, Daniel C.; Cugliandolo, Leticia F.; Gonzales Arenas, Zochil; Lozano, Gustavo Sergio
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We construct a path-integral representation of the generating functional for the dissipative dynamics of a classical magnetic moment as described by the stochastic generalization of the Landau–Lifshitz–Gilbert equation proposed by Brown (1963 Phys. Rev. 130 1677), with the possible addition of spin-torque terms. In the process of constructing this functional in the Cartesian coordinate system, we critically revisit this stochastic equation. We present it in a form that accommodates for any discretization scheme thanks to the inclusion of a drift term. The generalized equation ensures the conservation of the magnetization modulus and the approach to the Gibbs–Boltzmann equilibrium in the absence of non-potential and time-dependent forces. The drift term vanishes only if the mid-point Stratonovich prescription is used. We next reset the problem in the more natural spherical coordinate system. We show that the noise transforms non-trivially to spherical coordinates acquiring a non-vanishing mean value in this coordinate system, a fact that has been often overlooked in the literature. We next construct the generating functional formalism in this system of coordinates for any discretization prescription. The functional formalism in Cartesian or spherical coordinates should serve as a starting point to study different aspects of the out-of-equilibrium dynamics of magnets. Extensions to colored noise, micro-magnetism and disordered problems are straightforward.
Fil: Aron, Camille. Rutgers University; Estados Unidos. University of Princeton; Estados Unidos
Fil: Barci, Daniel C.. Universidade do Estado do Rio de Janeiro; Brasil
Fil: Cugliandolo, Leticia F.. Sorbonne Universités; Francia
Fil: Gonzales Arenas, Zochil. Centro Brasileiro de Pesquisas Fisicas; Brasil
Fil: Lozano, Gustavo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Sorbonne Universités; Francia - Materia
-
Path Integral
Noise
Spin Dynamics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18278
Ver los metadatos del registro completo
id |
CONICETDig_f54be3768f20ec8b6cbdcb14fd2b5ef6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18278 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equationAron, CamilleBarci, Daniel C.Cugliandolo, Leticia F.Gonzales Arenas, ZochilLozano, Gustavo SergioPath IntegralNoiseSpin Dynamicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We construct a path-integral representation of the generating functional for the dissipative dynamics of a classical magnetic moment as described by the stochastic generalization of the Landau–Lifshitz–Gilbert equation proposed by Brown (1963 Phys. Rev. 130 1677), with the possible addition of spin-torque terms. In the process of constructing this functional in the Cartesian coordinate system, we critically revisit this stochastic equation. We present it in a form that accommodates for any discretization scheme thanks to the inclusion of a drift term. The generalized equation ensures the conservation of the magnetization modulus and the approach to the Gibbs–Boltzmann equilibrium in the absence of non-potential and time-dependent forces. The drift term vanishes only if the mid-point Stratonovich prescription is used. We next reset the problem in the more natural spherical coordinate system. We show that the noise transforms non-trivially to spherical coordinates acquiring a non-vanishing mean value in this coordinate system, a fact that has been often overlooked in the literature. We next construct the generating functional formalism in this system of coordinates for any discretization prescription. The functional formalism in Cartesian or spherical coordinates should serve as a starting point to study different aspects of the out-of-equilibrium dynamics of magnets. Extensions to colored noise, micro-magnetism and disordered problems are straightforward.Fil: Aron, Camille. Rutgers University; Estados Unidos. University of Princeton; Estados UnidosFil: Barci, Daniel C.. Universidade do Estado do Rio de Janeiro; BrasilFil: Cugliandolo, Leticia F.. Sorbonne Universités; FranciaFil: Gonzales Arenas, Zochil. Centro Brasileiro de Pesquisas Fisicas; BrasilFil: Lozano, Gustavo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Sorbonne Universités; FranciaIop Publishing2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18278Aron, Camille; Barci, Daniel C.; Cugliandolo, Leticia F.; Gonzales Arenas, Zochil; Lozano, Gustavo Sergio; Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2014; 9-2014; 1-591742-5468CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1742-5468/2014/09/P09008info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:09:37Zoai:ri.conicet.gov.ar:11336/18278instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:09:37.879CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation |
title |
Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation |
spellingShingle |
Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation Aron, Camille Path Integral Noise Spin Dynamics |
title_short |
Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation |
title_full |
Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation |
title_fullStr |
Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation |
title_full_unstemmed |
Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation |
title_sort |
Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation |
dc.creator.none.fl_str_mv |
Aron, Camille Barci, Daniel C. Cugliandolo, Leticia F. Gonzales Arenas, Zochil Lozano, Gustavo Sergio |
author |
Aron, Camille |
author_facet |
Aron, Camille Barci, Daniel C. Cugliandolo, Leticia F. Gonzales Arenas, Zochil Lozano, Gustavo Sergio |
author_role |
author |
author2 |
Barci, Daniel C. Cugliandolo, Leticia F. Gonzales Arenas, Zochil Lozano, Gustavo Sergio |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Path Integral Noise Spin Dynamics |
topic |
Path Integral Noise Spin Dynamics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We construct a path-integral representation of the generating functional for the dissipative dynamics of a classical magnetic moment as described by the stochastic generalization of the Landau–Lifshitz–Gilbert equation proposed by Brown (1963 Phys. Rev. 130 1677), with the possible addition of spin-torque terms. In the process of constructing this functional in the Cartesian coordinate system, we critically revisit this stochastic equation. We present it in a form that accommodates for any discretization scheme thanks to the inclusion of a drift term. The generalized equation ensures the conservation of the magnetization modulus and the approach to the Gibbs–Boltzmann equilibrium in the absence of non-potential and time-dependent forces. The drift term vanishes only if the mid-point Stratonovich prescription is used. We next reset the problem in the more natural spherical coordinate system. We show that the noise transforms non-trivially to spherical coordinates acquiring a non-vanishing mean value in this coordinate system, a fact that has been often overlooked in the literature. We next construct the generating functional formalism in this system of coordinates for any discretization prescription. The functional formalism in Cartesian or spherical coordinates should serve as a starting point to study different aspects of the out-of-equilibrium dynamics of magnets. Extensions to colored noise, micro-magnetism and disordered problems are straightforward. Fil: Aron, Camille. Rutgers University; Estados Unidos. University of Princeton; Estados Unidos Fil: Barci, Daniel C.. Universidade do Estado do Rio de Janeiro; Brasil Fil: Cugliandolo, Leticia F.. Sorbonne Universités; Francia Fil: Gonzales Arenas, Zochil. Centro Brasileiro de Pesquisas Fisicas; Brasil Fil: Lozano, Gustavo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Sorbonne Universités; Francia |
description |
We construct a path-integral representation of the generating functional for the dissipative dynamics of a classical magnetic moment as described by the stochastic generalization of the Landau–Lifshitz–Gilbert equation proposed by Brown (1963 Phys. Rev. 130 1677), with the possible addition of spin-torque terms. In the process of constructing this functional in the Cartesian coordinate system, we critically revisit this stochastic equation. We present it in a form that accommodates for any discretization scheme thanks to the inclusion of a drift term. The generalized equation ensures the conservation of the magnetization modulus and the approach to the Gibbs–Boltzmann equilibrium in the absence of non-potential and time-dependent forces. The drift term vanishes only if the mid-point Stratonovich prescription is used. We next reset the problem in the more natural spherical coordinate system. We show that the noise transforms non-trivially to spherical coordinates acquiring a non-vanishing mean value in this coordinate system, a fact that has been often overlooked in the literature. We next construct the generating functional formalism in this system of coordinates for any discretization prescription. The functional formalism in Cartesian or spherical coordinates should serve as a starting point to study different aspects of the out-of-equilibrium dynamics of magnets. Extensions to colored noise, micro-magnetism and disordered problems are straightforward. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18278 Aron, Camille; Barci, Daniel C.; Cugliandolo, Leticia F.; Gonzales Arenas, Zochil; Lozano, Gustavo Sergio; Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2014; 9-2014; 1-59 1742-5468 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18278 |
identifier_str_mv |
Aron, Camille; Barci, Daniel C.; Cugliandolo, Leticia F.; Gonzales Arenas, Zochil; Lozano, Gustavo Sergio; Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2014; 9-2014; 1-59 1742-5468 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1742-5468/2014/09/P09008 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Iop Publishing |
publisher.none.fl_str_mv |
Iop Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980474905952256 |
score |
12.993085 |