Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation

Autores
Aron, Camille; Barci, Daniel C.; Cugliandolo, Leticia F.; Gonzales Arenas, Zochil; Lozano, Gustavo Sergio
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We construct a path-integral representation of the generating functional for the dissipative dynamics of a classical magnetic moment as described by the stochastic generalization of the Landau–Lifshitz–Gilbert equation proposed by Brown (1963 Phys. Rev. 130 1677), with the possible addition of spin-torque terms. In the process of constructing this functional in the Cartesian coordinate system, we critically revisit this stochastic equation. We present it in a form that accommodates for any discretization scheme thanks to the inclusion of a drift term. The generalized equation ensures the conservation of the magnetization modulus and the approach to the Gibbs–Boltzmann equilibrium in the absence of non-potential and time-dependent forces. The drift term vanishes only if the mid-point Stratonovich prescription is used. We next reset the problem in the more natural spherical coordinate system. We show that the noise transforms non-trivially to spherical coordinates acquiring a non-vanishing mean value in this coordinate system, a fact that has been often overlooked in the literature. We next construct the generating functional formalism in this system of coordinates for any discretization prescription. The functional formalism in Cartesian or spherical coordinates should serve as a starting point to study different aspects of the out-of-equilibrium dynamics of magnets. Extensions to colored noise, micro-magnetism and disordered problems are straightforward.
Fil: Aron, Camille. Rutgers University; Estados Unidos. University of Princeton; Estados Unidos
Fil: Barci, Daniel C.. Universidade do Estado do Rio de Janeiro; Brasil
Fil: Cugliandolo, Leticia F.. Sorbonne Universités; Francia
Fil: Gonzales Arenas, Zochil. Centro Brasileiro de Pesquisas Fisicas; Brasil
Fil: Lozano, Gustavo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Sorbonne Universités; Francia
Materia
Path Integral
Noise
Spin Dynamics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18278

id CONICETDig_f54be3768f20ec8b6cbdcb14fd2b5ef6
oai_identifier_str oai:ri.conicet.gov.ar:11336/18278
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equationAron, CamilleBarci, Daniel C.Cugliandolo, Leticia F.Gonzales Arenas, ZochilLozano, Gustavo SergioPath IntegralNoiseSpin Dynamicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We construct a path-integral representation of the generating functional for the dissipative dynamics of a classical magnetic moment as described by the stochastic generalization of the Landau–Lifshitz–Gilbert equation proposed by Brown (1963 Phys. Rev. 130 1677), with the possible addition of spin-torque terms. In the process of constructing this functional in the Cartesian coordinate system, we critically revisit this stochastic equation. We present it in a form that accommodates for any discretization scheme thanks to the inclusion of a drift term. The generalized equation ensures the conservation of the magnetization modulus and the approach to the Gibbs–Boltzmann equilibrium in the absence of non-potential and time-dependent forces. The drift term vanishes only if the mid-point Stratonovich prescription is used. We next reset the problem in the more natural spherical coordinate system. We show that the noise transforms non-trivially to spherical coordinates acquiring a non-vanishing mean value in this coordinate system, a fact that has been often overlooked in the literature. We next construct the generating functional formalism in this system of coordinates for any discretization prescription. The functional formalism in Cartesian or spherical coordinates should serve as a starting point to study different aspects of the out-of-equilibrium dynamics of magnets. Extensions to colored noise, micro-magnetism and disordered problems are straightforward.Fil: Aron, Camille. Rutgers University; Estados Unidos. University of Princeton; Estados UnidosFil: Barci, Daniel C.. Universidade do Estado do Rio de Janeiro; BrasilFil: Cugliandolo, Leticia F.. Sorbonne Universités; FranciaFil: Gonzales Arenas, Zochil. Centro Brasileiro de Pesquisas Fisicas; BrasilFil: Lozano, Gustavo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Sorbonne Universités; FranciaIop Publishing2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18278Aron, Camille; Barci, Daniel C.; Cugliandolo, Leticia F.; Gonzales Arenas, Zochil; Lozano, Gustavo Sergio; Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2014; 9-2014; 1-591742-5468CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1742-5468/2014/09/P09008info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:09:37Zoai:ri.conicet.gov.ar:11336/18278instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:09:37.879CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation
title Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation
spellingShingle Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation
Aron, Camille
Path Integral
Noise
Spin Dynamics
title_short Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation
title_full Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation
title_fullStr Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation
title_full_unstemmed Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation
title_sort Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation
dc.creator.none.fl_str_mv Aron, Camille
Barci, Daniel C.
Cugliandolo, Leticia F.
Gonzales Arenas, Zochil
Lozano, Gustavo Sergio
author Aron, Camille
author_facet Aron, Camille
Barci, Daniel C.
Cugliandolo, Leticia F.
Gonzales Arenas, Zochil
Lozano, Gustavo Sergio
author_role author
author2 Barci, Daniel C.
Cugliandolo, Leticia F.
Gonzales Arenas, Zochil
Lozano, Gustavo Sergio
author2_role author
author
author
author
dc.subject.none.fl_str_mv Path Integral
Noise
Spin Dynamics
topic Path Integral
Noise
Spin Dynamics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We construct a path-integral representation of the generating functional for the dissipative dynamics of a classical magnetic moment as described by the stochastic generalization of the Landau–Lifshitz–Gilbert equation proposed by Brown (1963 Phys. Rev. 130 1677), with the possible addition of spin-torque terms. In the process of constructing this functional in the Cartesian coordinate system, we critically revisit this stochastic equation. We present it in a form that accommodates for any discretization scheme thanks to the inclusion of a drift term. The generalized equation ensures the conservation of the magnetization modulus and the approach to the Gibbs–Boltzmann equilibrium in the absence of non-potential and time-dependent forces. The drift term vanishes only if the mid-point Stratonovich prescription is used. We next reset the problem in the more natural spherical coordinate system. We show that the noise transforms non-trivially to spherical coordinates acquiring a non-vanishing mean value in this coordinate system, a fact that has been often overlooked in the literature. We next construct the generating functional formalism in this system of coordinates for any discretization prescription. The functional formalism in Cartesian or spherical coordinates should serve as a starting point to study different aspects of the out-of-equilibrium dynamics of magnets. Extensions to colored noise, micro-magnetism and disordered problems are straightforward.
Fil: Aron, Camille. Rutgers University; Estados Unidos. University of Princeton; Estados Unidos
Fil: Barci, Daniel C.. Universidade do Estado do Rio de Janeiro; Brasil
Fil: Cugliandolo, Leticia F.. Sorbonne Universités; Francia
Fil: Gonzales Arenas, Zochil. Centro Brasileiro de Pesquisas Fisicas; Brasil
Fil: Lozano, Gustavo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Sorbonne Universités; Francia
description We construct a path-integral representation of the generating functional for the dissipative dynamics of a classical magnetic moment as described by the stochastic generalization of the Landau–Lifshitz–Gilbert equation proposed by Brown (1963 Phys. Rev. 130 1677), with the possible addition of spin-torque terms. In the process of constructing this functional in the Cartesian coordinate system, we critically revisit this stochastic equation. We present it in a form that accommodates for any discretization scheme thanks to the inclusion of a drift term. The generalized equation ensures the conservation of the magnetization modulus and the approach to the Gibbs–Boltzmann equilibrium in the absence of non-potential and time-dependent forces. The drift term vanishes only if the mid-point Stratonovich prescription is used. We next reset the problem in the more natural spherical coordinate system. We show that the noise transforms non-trivially to spherical coordinates acquiring a non-vanishing mean value in this coordinate system, a fact that has been often overlooked in the literature. We next construct the generating functional formalism in this system of coordinates for any discretization prescription. The functional formalism in Cartesian or spherical coordinates should serve as a starting point to study different aspects of the out-of-equilibrium dynamics of magnets. Extensions to colored noise, micro-magnetism and disordered problems are straightforward.
publishDate 2014
dc.date.none.fl_str_mv 2014-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18278
Aron, Camille; Barci, Daniel C.; Cugliandolo, Leticia F.; Gonzales Arenas, Zochil; Lozano, Gustavo Sergio; Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2014; 9-2014; 1-59
1742-5468
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18278
identifier_str_mv Aron, Camille; Barci, Daniel C.; Cugliandolo, Leticia F.; Gonzales Arenas, Zochil; Lozano, Gustavo Sergio; Magnetization dynamics: path-integral formalism for the stochastic Landau–Lifshitz–Gilbert equation; Iop Publishing; Journal Of Statistical Mechanics: Theory And Experiment; 2014; 9-2014; 1-59
1742-5468
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1742-5468/2014/09/P09008
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Iop Publishing
publisher.none.fl_str_mv Iop Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980474905952256
score 12.993085