Machine learning-based prediction of FeNi nanoparticle magnetization
- Autores
- Williamson, Federico; Naciff, Nadhir; Catania, Carlos Adrian; Dos Santos Mendez, Gonzalo Joaquín; Amigo, Nicolás; Bringa, Eduardo Marcial
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work proposes a computationally efficient approach for estimating the magnetization of Fe0.7Ni0.3 body-centered cubic (bcc) nanoparticles (NPs) at room temperature using machine-learning algorithms, in terms of the average magnetic moment per atom, ⟨μ⟩. The magnetization data of isolated NPs were generated using atomistic spin dynamics (ASD) simulations for various nanoparticle shapes (cubes, spheres, octahedra, cones, cylinders, ellipsoids, flakes, and pyramids, with or without nanovoids) and FeNi distributions (random, core-shell, onion, sandwich, and Janus with different boundary planes). More than 1600 NPs were created and split into training and testing sets (70%–30% split), with features including the number of Ni/Fe surface and core atoms, potential energy distributions, pair correlation functions, and coordination distributions. Several machine-learning algorithms, including Random Forest (RF), Elastic Net, Support Vector Regression (SVR), and Gradient Boosting Regression (CatBoost), were applied to predict the average magnetic moment per atom of these NPs. The best-performing models, CatBoost and RF, achieved R2 scores of up to 0.86, demonstrating their accuracy in predicting NP magnetization. Feature analysis highlighted the significance of the interface between Fe and Ni clusters, Fe–Fe interactions, and the presence of Fe on the surface as critical contributors to overall magnetization. Random alloy spherical NPs without porosity exhibited the highest ⟨μ⟩ ∼ 1.6μB due to reduced Ni–Ni interactions. Applying machine-learning methods significantly reduces computational time and memory requirements compared to traditional ASD simulations. This allows for rapid prediction of NPs with desired magnetic properties, making them suitable for various technological applications.
Fil: Williamson, Federico. Universidad Nacional de Cuyo; Argentina
Fil: Naciff, Nadhir. Universidad de Mendoza. Facultad de Ingenieria; Argentina
Fil: Catania, Carlos Adrian. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Dos Santos Mendez, Gonzalo Joaquín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina
Fil: Amigo, Nicolás. Universidad Tecnologica Metropolitana (utem);
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina - Materia
-
Magnetization
Nanoparticle
Machine learning
Atomistic spin dynamics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/247746
Ver los metadatos del registro completo
id |
CONICETDig_4e208e54a9b989ca2446ee1fade45e89 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/247746 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Machine learning-based prediction of FeNi nanoparticle magnetizationWilliamson, FedericoNaciff, NadhirCatania, Carlos AdrianDos Santos Mendez, Gonzalo JoaquínAmigo, NicolásBringa, Eduardo MarcialMagnetizationNanoparticleMachine learningAtomistic spin dynamicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1This work proposes a computationally efficient approach for estimating the magnetization of Fe0.7Ni0.3 body-centered cubic (bcc) nanoparticles (NPs) at room temperature using machine-learning algorithms, in terms of the average magnetic moment per atom, ⟨μ⟩. The magnetization data of isolated NPs were generated using atomistic spin dynamics (ASD) simulations for various nanoparticle shapes (cubes, spheres, octahedra, cones, cylinders, ellipsoids, flakes, and pyramids, with or without nanovoids) and FeNi distributions (random, core-shell, onion, sandwich, and Janus with different boundary planes). More than 1600 NPs were created and split into training and testing sets (70%–30% split), with features including the number of Ni/Fe surface and core atoms, potential energy distributions, pair correlation functions, and coordination distributions. Several machine-learning algorithms, including Random Forest (RF), Elastic Net, Support Vector Regression (SVR), and Gradient Boosting Regression (CatBoost), were applied to predict the average magnetic moment per atom of these NPs. The best-performing models, CatBoost and RF, achieved R2 scores of up to 0.86, demonstrating their accuracy in predicting NP magnetization. Feature analysis highlighted the significance of the interface between Fe and Ni clusters, Fe–Fe interactions, and the presence of Fe on the surface as critical contributors to overall magnetization. Random alloy spherical NPs without porosity exhibited the highest ⟨μ⟩ ∼ 1.6μB due to reduced Ni–Ni interactions. Applying machine-learning methods significantly reduces computational time and memory requirements compared to traditional ASD simulations. This allows for rapid prediction of NPs with desired magnetic properties, making them suitable for various technological applications.Fil: Williamson, Federico. Universidad Nacional de Cuyo; ArgentinaFil: Naciff, Nadhir. Universidad de Mendoza. Facultad de Ingenieria; ArgentinaFil: Catania, Carlos Adrian. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Dos Santos Mendez, Gonzalo Joaquín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; ArgentinaFil: Amigo, Nicolás. Universidad Tecnologica Metropolitana (utem);Fil: Bringa, Eduardo Marcial. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaElsevier2024-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/247746Williamson, Federico; Naciff, Nadhir; Catania, Carlos Adrian; Dos Santos Mendez, Gonzalo Joaquín; Amigo, Nicolás; et al.; Machine learning-based prediction of FeNi nanoparticle magnetization; Elsevier; Journal of Materials Research and Technology; 33; 11-2024; 5263-52762238-7854CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2238785424024128info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmrt.2024.10.142info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:35:07Zoai:ri.conicet.gov.ar:11336/247746instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:35:08.085CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Machine learning-based prediction of FeNi nanoparticle magnetization |
title |
Machine learning-based prediction of FeNi nanoparticle magnetization |
spellingShingle |
Machine learning-based prediction of FeNi nanoparticle magnetization Williamson, Federico Magnetization Nanoparticle Machine learning Atomistic spin dynamics |
title_short |
Machine learning-based prediction of FeNi nanoparticle magnetization |
title_full |
Machine learning-based prediction of FeNi nanoparticle magnetization |
title_fullStr |
Machine learning-based prediction of FeNi nanoparticle magnetization |
title_full_unstemmed |
Machine learning-based prediction of FeNi nanoparticle magnetization |
title_sort |
Machine learning-based prediction of FeNi nanoparticle magnetization |
dc.creator.none.fl_str_mv |
Williamson, Federico Naciff, Nadhir Catania, Carlos Adrian Dos Santos Mendez, Gonzalo Joaquín Amigo, Nicolás Bringa, Eduardo Marcial |
author |
Williamson, Federico |
author_facet |
Williamson, Federico Naciff, Nadhir Catania, Carlos Adrian Dos Santos Mendez, Gonzalo Joaquín Amigo, Nicolás Bringa, Eduardo Marcial |
author_role |
author |
author2 |
Naciff, Nadhir Catania, Carlos Adrian Dos Santos Mendez, Gonzalo Joaquín Amigo, Nicolás Bringa, Eduardo Marcial |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Magnetization Nanoparticle Machine learning Atomistic spin dynamics |
topic |
Magnetization Nanoparticle Machine learning Atomistic spin dynamics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This work proposes a computationally efficient approach for estimating the magnetization of Fe0.7Ni0.3 body-centered cubic (bcc) nanoparticles (NPs) at room temperature using machine-learning algorithms, in terms of the average magnetic moment per atom, ⟨μ⟩. The magnetization data of isolated NPs were generated using atomistic spin dynamics (ASD) simulations for various nanoparticle shapes (cubes, spheres, octahedra, cones, cylinders, ellipsoids, flakes, and pyramids, with or without nanovoids) and FeNi distributions (random, core-shell, onion, sandwich, and Janus with different boundary planes). More than 1600 NPs were created and split into training and testing sets (70%–30% split), with features including the number of Ni/Fe surface and core atoms, potential energy distributions, pair correlation functions, and coordination distributions. Several machine-learning algorithms, including Random Forest (RF), Elastic Net, Support Vector Regression (SVR), and Gradient Boosting Regression (CatBoost), were applied to predict the average magnetic moment per atom of these NPs. The best-performing models, CatBoost and RF, achieved R2 scores of up to 0.86, demonstrating their accuracy in predicting NP magnetization. Feature analysis highlighted the significance of the interface between Fe and Ni clusters, Fe–Fe interactions, and the presence of Fe on the surface as critical contributors to overall magnetization. Random alloy spherical NPs without porosity exhibited the highest ⟨μ⟩ ∼ 1.6μB due to reduced Ni–Ni interactions. Applying machine-learning methods significantly reduces computational time and memory requirements compared to traditional ASD simulations. This allows for rapid prediction of NPs with desired magnetic properties, making them suitable for various technological applications. Fil: Williamson, Federico. Universidad Nacional de Cuyo; Argentina Fil: Naciff, Nadhir. Universidad de Mendoza. Facultad de Ingenieria; Argentina Fil: Catania, Carlos Adrian. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Dos Santos Mendez, Gonzalo Joaquín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina Fil: Amigo, Nicolás. Universidad Tecnologica Metropolitana (utem); Fil: Bringa, Eduardo Marcial. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina |
description |
This work proposes a computationally efficient approach for estimating the magnetization of Fe0.7Ni0.3 body-centered cubic (bcc) nanoparticles (NPs) at room temperature using machine-learning algorithms, in terms of the average magnetic moment per atom, ⟨μ⟩. The magnetization data of isolated NPs were generated using atomistic spin dynamics (ASD) simulations for various nanoparticle shapes (cubes, spheres, octahedra, cones, cylinders, ellipsoids, flakes, and pyramids, with or without nanovoids) and FeNi distributions (random, core-shell, onion, sandwich, and Janus with different boundary planes). More than 1600 NPs were created and split into training and testing sets (70%–30% split), with features including the number of Ni/Fe surface and core atoms, potential energy distributions, pair correlation functions, and coordination distributions. Several machine-learning algorithms, including Random Forest (RF), Elastic Net, Support Vector Regression (SVR), and Gradient Boosting Regression (CatBoost), were applied to predict the average magnetic moment per atom of these NPs. The best-performing models, CatBoost and RF, achieved R2 scores of up to 0.86, demonstrating their accuracy in predicting NP magnetization. Feature analysis highlighted the significance of the interface between Fe and Ni clusters, Fe–Fe interactions, and the presence of Fe on the surface as critical contributors to overall magnetization. Random alloy spherical NPs without porosity exhibited the highest ⟨μ⟩ ∼ 1.6μB due to reduced Ni–Ni interactions. Applying machine-learning methods significantly reduces computational time and memory requirements compared to traditional ASD simulations. This allows for rapid prediction of NPs with desired magnetic properties, making them suitable for various technological applications. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/247746 Williamson, Federico; Naciff, Nadhir; Catania, Carlos Adrian; Dos Santos Mendez, Gonzalo Joaquín; Amigo, Nicolás; et al.; Machine learning-based prediction of FeNi nanoparticle magnetization; Elsevier; Journal of Materials Research and Technology; 33; 11-2024; 5263-5276 2238-7854 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/247746 |
identifier_str_mv |
Williamson, Federico; Naciff, Nadhir; Catania, Carlos Adrian; Dos Santos Mendez, Gonzalo Joaquín; Amigo, Nicolás; et al.; Machine learning-based prediction of FeNi nanoparticle magnetization; Elsevier; Journal of Materials Research and Technology; 33; 11-2024; 5263-5276 2238-7854 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S2238785424024128 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmrt.2024.10.142 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083478362259456 |
score |
12.891075 |