Size-dependent Curie temperature of Ni nanoparticles from spin-lattice dynamics simulations

Autores
Dos Santos Mendez, Gonzalo Joaquín; Urbassek, Herbert M.; Bringa, Eduardo Marcial
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The magnetic properties of Ni nanoparticles (NPs) with diameter D are investigated using spin-lattice dynamics (SLD) simulations. Using exchange interactions fitted to ab-initio results we obtain a Curie temperature, Tc, similar, but lower, than experiments. In order to reproduce quantitatively the bulk Curie temperature and the experimental results, the exchange energy has to be increased by 25% compared to the ab-initio value. During the simulated time, Ni NPs remain ferromagnetic down to the smallest sizes investigated here, containing around 500 atoms. The average magnetic moment of the NPs is slightly smaller than that determined experimentally. By considering a core-shell model for NPs, in which the shell atoms are assigned a larger magnetic moment, this discrepancy can be removed. Tc is lower for a moving lattice than for a frozen lattice, as expected, but this difference decreases with NP size because smaller NPs include higher surface disorder which dominates the transition. For NPs, Tc decreases with the NP diameter D by at most 10% at D = 2 nm, in agreement with several experiments, and unlike some modeling or theoretical scaling results which predict a considerably larger decrease. The decrease of Tc is well described by finite-size scaling models, with a critical exponent that depends on the SLD settings for a frozen or moving lattice, and also depends on the procedure for determining Tc. Extrapolating the inverse of the magnetization as function of temperature near Tc gives a lower Tc than the maximum of the susceptibility.
Fil: Dos Santos Mendez, Gonzalo Joaquín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina
Fil: Urbassek, Herbert M.. University of Kaiserslautern; Alemania
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Universidad Mayor; Chile
Materia
NICKEL
MAGNETIZATION
MOLECULAR DYNAMICS
SPIN DYNAMICS
NANOPARTICLES
CURIE TEMPERATURE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/259230

id CONICETDig_fd0278addf402137105623f4938ea318
oai_identifier_str oai:ri.conicet.gov.ar:11336/259230
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Size-dependent Curie temperature of Ni nanoparticles from spin-lattice dynamics simulationsDos Santos Mendez, Gonzalo JoaquínUrbassek, Herbert M.Bringa, Eduardo MarcialNICKELMAGNETIZATIONMOLECULAR DYNAMICSSPIN DYNAMICSNANOPARTICLESCURIE TEMPERATUREhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The magnetic properties of Ni nanoparticles (NPs) with diameter D are investigated using spin-lattice dynamics (SLD) simulations. Using exchange interactions fitted to ab-initio results we obtain a Curie temperature, Tc, similar, but lower, than experiments. In order to reproduce quantitatively the bulk Curie temperature and the experimental results, the exchange energy has to be increased by 25% compared to the ab-initio value. During the simulated time, Ni NPs remain ferromagnetic down to the smallest sizes investigated here, containing around 500 atoms. The average magnetic moment of the NPs is slightly smaller than that determined experimentally. By considering a core-shell model for NPs, in which the shell atoms are assigned a larger magnetic moment, this discrepancy can be removed. Tc is lower for a moving lattice than for a frozen lattice, as expected, but this difference decreases with NP size because smaller NPs include higher surface disorder which dominates the transition. For NPs, Tc decreases with the NP diameter D by at most 10% at D = 2 nm, in agreement with several experiments, and unlike some modeling or theoretical scaling results which predict a considerably larger decrease. The decrease of Tc is well described by finite-size scaling models, with a critical exponent that depends on the SLD settings for a frozen or moving lattice, and also depends on the procedure for determining Tc. Extrapolating the inverse of the magnetization as function of temperature near Tc gives a lower Tc than the maximum of the susceptibility.Fil: Dos Santos Mendez, Gonzalo Joaquín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; ArgentinaFil: Urbassek, Herbert M.. University of Kaiserslautern; AlemaniaFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Universidad Mayor; ChileNature2024-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/259230Dos Santos Mendez, Gonzalo Joaquín; Urbassek, Herbert M.; Bringa, Eduardo Marcial; Size-dependent Curie temperature of Ni nanoparticles from spin-lattice dynamics simulations; Nature; Scientific Reports; 14; 1; 9-2024; 1-122045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-024-73129-winfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-024-73129-winfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:57:17Zoai:ri.conicet.gov.ar:11336/259230instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:57:17.412CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Size-dependent Curie temperature of Ni nanoparticles from spin-lattice dynamics simulations
title Size-dependent Curie temperature of Ni nanoparticles from spin-lattice dynamics simulations
spellingShingle Size-dependent Curie temperature of Ni nanoparticles from spin-lattice dynamics simulations
Dos Santos Mendez, Gonzalo Joaquín
NICKEL
MAGNETIZATION
MOLECULAR DYNAMICS
SPIN DYNAMICS
NANOPARTICLES
CURIE TEMPERATURE
title_short Size-dependent Curie temperature of Ni nanoparticles from spin-lattice dynamics simulations
title_full Size-dependent Curie temperature of Ni nanoparticles from spin-lattice dynamics simulations
title_fullStr Size-dependent Curie temperature of Ni nanoparticles from spin-lattice dynamics simulations
title_full_unstemmed Size-dependent Curie temperature of Ni nanoparticles from spin-lattice dynamics simulations
title_sort Size-dependent Curie temperature of Ni nanoparticles from spin-lattice dynamics simulations
dc.creator.none.fl_str_mv Dos Santos Mendez, Gonzalo Joaquín
Urbassek, Herbert M.
Bringa, Eduardo Marcial
author Dos Santos Mendez, Gonzalo Joaquín
author_facet Dos Santos Mendez, Gonzalo Joaquín
Urbassek, Herbert M.
Bringa, Eduardo Marcial
author_role author
author2 Urbassek, Herbert M.
Bringa, Eduardo Marcial
author2_role author
author
dc.subject.none.fl_str_mv NICKEL
MAGNETIZATION
MOLECULAR DYNAMICS
SPIN DYNAMICS
NANOPARTICLES
CURIE TEMPERATURE
topic NICKEL
MAGNETIZATION
MOLECULAR DYNAMICS
SPIN DYNAMICS
NANOPARTICLES
CURIE TEMPERATURE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The magnetic properties of Ni nanoparticles (NPs) with diameter D are investigated using spin-lattice dynamics (SLD) simulations. Using exchange interactions fitted to ab-initio results we obtain a Curie temperature, Tc, similar, but lower, than experiments. In order to reproduce quantitatively the bulk Curie temperature and the experimental results, the exchange energy has to be increased by 25% compared to the ab-initio value. During the simulated time, Ni NPs remain ferromagnetic down to the smallest sizes investigated here, containing around 500 atoms. The average magnetic moment of the NPs is slightly smaller than that determined experimentally. By considering a core-shell model for NPs, in which the shell atoms are assigned a larger magnetic moment, this discrepancy can be removed. Tc is lower for a moving lattice than for a frozen lattice, as expected, but this difference decreases with NP size because smaller NPs include higher surface disorder which dominates the transition. For NPs, Tc decreases with the NP diameter D by at most 10% at D = 2 nm, in agreement with several experiments, and unlike some modeling or theoretical scaling results which predict a considerably larger decrease. The decrease of Tc is well described by finite-size scaling models, with a critical exponent that depends on the SLD settings for a frozen or moving lattice, and also depends on the procedure for determining Tc. Extrapolating the inverse of the magnetization as function of temperature near Tc gives a lower Tc than the maximum of the susceptibility.
Fil: Dos Santos Mendez, Gonzalo Joaquín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina
Fil: Urbassek, Herbert M.. University of Kaiserslautern; Alemania
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Universidad Mayor; Chile
description The magnetic properties of Ni nanoparticles (NPs) with diameter D are investigated using spin-lattice dynamics (SLD) simulations. Using exchange interactions fitted to ab-initio results we obtain a Curie temperature, Tc, similar, but lower, than experiments. In order to reproduce quantitatively the bulk Curie temperature and the experimental results, the exchange energy has to be increased by 25% compared to the ab-initio value. During the simulated time, Ni NPs remain ferromagnetic down to the smallest sizes investigated here, containing around 500 atoms. The average magnetic moment of the NPs is slightly smaller than that determined experimentally. By considering a core-shell model for NPs, in which the shell atoms are assigned a larger magnetic moment, this discrepancy can be removed. Tc is lower for a moving lattice than for a frozen lattice, as expected, but this difference decreases with NP size because smaller NPs include higher surface disorder which dominates the transition. For NPs, Tc decreases with the NP diameter D by at most 10% at D = 2 nm, in agreement with several experiments, and unlike some modeling or theoretical scaling results which predict a considerably larger decrease. The decrease of Tc is well described by finite-size scaling models, with a critical exponent that depends on the SLD settings for a frozen or moving lattice, and also depends on the procedure for determining Tc. Extrapolating the inverse of the magnetization as function of temperature near Tc gives a lower Tc than the maximum of the susceptibility.
publishDate 2024
dc.date.none.fl_str_mv 2024-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/259230
Dos Santos Mendez, Gonzalo Joaquín; Urbassek, Herbert M.; Bringa, Eduardo Marcial; Size-dependent Curie temperature of Ni nanoparticles from spin-lattice dynamics simulations; Nature; Scientific Reports; 14; 1; 9-2024; 1-12
2045-2322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/259230
identifier_str_mv Dos Santos Mendez, Gonzalo Joaquín; Urbassek, Herbert M.; Bringa, Eduardo Marcial; Size-dependent Curie temperature of Ni nanoparticles from spin-lattice dynamics simulations; Nature; Scientific Reports; 14; 1; 9-2024; 1-12
2045-2322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-024-73129-w
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-024-73129-w
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature
publisher.none.fl_str_mv Nature
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606242383101952
score 13.001348