Spin‑lattice‑dynamics analysis of magnetic properties of iron under compression

Autores
Dos Santos, Gonzalo Ramón; Meyer, Roberto Delfor; Tramontina Videla, Diego Ramiro; Bringa, Eduardo Marcial; Urbassek, Herbert M.
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Compression of a magnetic material leads to a change in its magnetic properties. We examine this effect using spin‑lattice dynamics for the special case of bcc‑Fe, using both single‑ and poly‑crystallineFe and a bicontinuous nanofoam structure. We find that during the elastic phase of compression, the magnetization increases due to a higher population of the nearest‑neighbor shell of atoms and the resulting higher exchange interaction of neighboring spins. In contrast, in the plastic phase of compression, the magnetization sinks, as defects are created, increasing the disorder and typically decreasing the average atom coordination number. The effects are more pronounced in single crystals than in polycrystals, since the presence of defects in the form of grain boundaries counteracts the increase in magnetization during the elastic phase of compression. Also, the effects are more pronounced at temperatures close to the Curie temperature than at room temperature. In nanofoams, the effect of compression is minor since compression proceeds more by void reduction and filament bending—with negligible effect on magnetization—than by strain within the ligaments. These findings will prove useful for tailoring magnetization under strain by introducing plasticity.
Fil: Dos Santos, Gonzalo Ramón. Universidad de Mendoza. Facultad de Ingeniería; Argentina
Fil: Meyer, Roberto Delfor. University of Kaiserslautern; Alemania
Fil: Tramontina Videla, Diego Ramiro. Universidad de Mendoza. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Urbassek, Herbert M.. University of Kaiserslautern; Alemania
Materia
iron
spin dynamics
molecular dynamics
magnetic properties
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/222397

id CONICETDig_c38662a3a84459e33233deb489bdfcf0
oai_identifier_str oai:ri.conicet.gov.ar:11336/222397
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Spin‑lattice‑dynamics analysis of magnetic properties of iron under compressionDos Santos, Gonzalo RamónMeyer, Roberto DelforTramontina Videla, Diego RamiroBringa, Eduardo MarcialUrbassek, Herbert M.ironspin dynamicsmolecular dynamicsmagnetic propertieshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Compression of a magnetic material leads to a change in its magnetic properties. We examine this effect using spin‑lattice dynamics for the special case of bcc‑Fe, using both single‑ and poly‑crystallineFe and a bicontinuous nanofoam structure. We find that during the elastic phase of compression, the magnetization increases due to a higher population of the nearest‑neighbor shell of atoms and the resulting higher exchange interaction of neighboring spins. In contrast, in the plastic phase of compression, the magnetization sinks, as defects are created, increasing the disorder and typically decreasing the average atom coordination number. The effects are more pronounced in single crystals than in polycrystals, since the presence of defects in the form of grain boundaries counteracts the increase in magnetization during the elastic phase of compression. Also, the effects are more pronounced at temperatures close to the Curie temperature than at room temperature. In nanofoams, the effect of compression is minor since compression proceeds more by void reduction and filament bending—with negligible effect on magnetization—than by strain within the ligaments. These findings will prove useful for tailoring magnetization under strain by introducing plasticity.Fil: Dos Santos, Gonzalo Ramón. Universidad de Mendoza. Facultad de Ingeniería; ArgentinaFil: Meyer, Roberto Delfor. University of Kaiserslautern; AlemaniaFil: Tramontina Videla, Diego Ramiro. Universidad de Mendoza. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Bringa, Eduardo Marcial. Universidad de Mendoza. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Urbassek, Herbert M.. University of Kaiserslautern; AlemaniaSpringer2023-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/222397Dos Santos, Gonzalo Ramón; Meyer, Roberto Delfor; Tramontina Videla, Diego Ramiro; Bringa, Eduardo Marcial; Urbassek, Herbert M.; Spin‑lattice‑dynamics analysis of magnetic properties of iron under compression; Springer; Journal of Materials Science; 13; 8-2023; 14282-142860022-2461CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-023-41499-2info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-023-41499-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:36Zoai:ri.conicet.gov.ar:11336/222397instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:37.148CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Spin‑lattice‑dynamics analysis of magnetic properties of iron under compression
title Spin‑lattice‑dynamics analysis of magnetic properties of iron under compression
spellingShingle Spin‑lattice‑dynamics analysis of magnetic properties of iron under compression
Dos Santos, Gonzalo Ramón
iron
spin dynamics
molecular dynamics
magnetic properties
title_short Spin‑lattice‑dynamics analysis of magnetic properties of iron under compression
title_full Spin‑lattice‑dynamics analysis of magnetic properties of iron under compression
title_fullStr Spin‑lattice‑dynamics analysis of magnetic properties of iron under compression
title_full_unstemmed Spin‑lattice‑dynamics analysis of magnetic properties of iron under compression
title_sort Spin‑lattice‑dynamics analysis of magnetic properties of iron under compression
dc.creator.none.fl_str_mv Dos Santos, Gonzalo Ramón
Meyer, Roberto Delfor
Tramontina Videla, Diego Ramiro
Bringa, Eduardo Marcial
Urbassek, Herbert M.
author Dos Santos, Gonzalo Ramón
author_facet Dos Santos, Gonzalo Ramón
Meyer, Roberto Delfor
Tramontina Videla, Diego Ramiro
Bringa, Eduardo Marcial
Urbassek, Herbert M.
author_role author
author2 Meyer, Roberto Delfor
Tramontina Videla, Diego Ramiro
Bringa, Eduardo Marcial
Urbassek, Herbert M.
author2_role author
author
author
author
dc.subject.none.fl_str_mv iron
spin dynamics
molecular dynamics
magnetic properties
topic iron
spin dynamics
molecular dynamics
magnetic properties
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Compression of a magnetic material leads to a change in its magnetic properties. We examine this effect using spin‑lattice dynamics for the special case of bcc‑Fe, using both single‑ and poly‑crystallineFe and a bicontinuous nanofoam structure. We find that during the elastic phase of compression, the magnetization increases due to a higher population of the nearest‑neighbor shell of atoms and the resulting higher exchange interaction of neighboring spins. In contrast, in the plastic phase of compression, the magnetization sinks, as defects are created, increasing the disorder and typically decreasing the average atom coordination number. The effects are more pronounced in single crystals than in polycrystals, since the presence of defects in the form of grain boundaries counteracts the increase in magnetization during the elastic phase of compression. Also, the effects are more pronounced at temperatures close to the Curie temperature than at room temperature. In nanofoams, the effect of compression is minor since compression proceeds more by void reduction and filament bending—with negligible effect on magnetization—than by strain within the ligaments. These findings will prove useful for tailoring magnetization under strain by introducing plasticity.
Fil: Dos Santos, Gonzalo Ramón. Universidad de Mendoza. Facultad de Ingeniería; Argentina
Fil: Meyer, Roberto Delfor. University of Kaiserslautern; Alemania
Fil: Tramontina Videla, Diego Ramiro. Universidad de Mendoza. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Urbassek, Herbert M.. University of Kaiserslautern; Alemania
description Compression of a magnetic material leads to a change in its magnetic properties. We examine this effect using spin‑lattice dynamics for the special case of bcc‑Fe, using both single‑ and poly‑crystallineFe and a bicontinuous nanofoam structure. We find that during the elastic phase of compression, the magnetization increases due to a higher population of the nearest‑neighbor shell of atoms and the resulting higher exchange interaction of neighboring spins. In contrast, in the plastic phase of compression, the magnetization sinks, as defects are created, increasing the disorder and typically decreasing the average atom coordination number. The effects are more pronounced in single crystals than in polycrystals, since the presence of defects in the form of grain boundaries counteracts the increase in magnetization during the elastic phase of compression. Also, the effects are more pronounced at temperatures close to the Curie temperature than at room temperature. In nanofoams, the effect of compression is minor since compression proceeds more by void reduction and filament bending—with negligible effect on magnetization—than by strain within the ligaments. These findings will prove useful for tailoring magnetization under strain by introducing plasticity.
publishDate 2023
dc.date.none.fl_str_mv 2023-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/222397
Dos Santos, Gonzalo Ramón; Meyer, Roberto Delfor; Tramontina Videla, Diego Ramiro; Bringa, Eduardo Marcial; Urbassek, Herbert M.; Spin‑lattice‑dynamics analysis of magnetic properties of iron under compression; Springer; Journal of Materials Science; 13; 8-2023; 14282-14286
0022-2461
CONICET Digital
CONICET
url http://hdl.handle.net/11336/222397
identifier_str_mv Dos Santos, Gonzalo Ramón; Meyer, Roberto Delfor; Tramontina Videla, Diego Ramiro; Bringa, Eduardo Marcial; Urbassek, Herbert M.; Spin‑lattice‑dynamics analysis of magnetic properties of iron under compression; Springer; Journal of Materials Science; 13; 8-2023; 14282-14286
0022-2461
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-023-41499-2
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-023-41499-2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268870870564864
score 13.13397