Static kinks in chains of interacting atoms
- Autores
- Landa, Haggai; Cormick, Maria Cecilia; Morigi, Giovanna
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We theoretically analyse the equation of topological solitons in a chain of particles interacting via a repulsive power-law potential and confined by a periodic lattice. Starting from the discrete model, we perform a gradient expansion and obtain the kink equation in the continuum limit for a power-law exponent n ≥ 1. The power-law interaction modifies the sine-Gordon equation, giving rise to a rescaling of the coefficient multiplying the second derivative (the kink width) and to an additional integral term. We argue that the integral term does not affect the local properties of the kink, but it governs the behaviour at the asymptotics. The kink behaviour at the center is dominated by a sine-Gordon equation and its width tends to increase with the power law exponent. When the interaction is the Coulomb repulsion, in particular, the kink width depends logarithmically on the chain size. We define an appropriate thermodynamic limit and compare our results with existing studies performed for infinite chains. Our formalism allows one to systematically take into account the finite-size effects and also slowly varying external potentials, such as for instance the curvature in an ion trap.
Fil: Landa, Haggai. Université Paris-Saclay; Francia
Fil: Cormick, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Morigi, Giovanna. Universitat Saarland; Alemania - Materia
-
FRENKEL
KONTOROVA
LONG
RANGE INTERACTIONS
SINE-GORDON KINK
TRAPPED IONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/137359
Ver los metadatos del registro completo
id |
CONICETDig_3dc03f81a90971277a16434321a62a8a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/137359 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Static kinks in chains of interacting atomsLanda, HaggaiCormick, Maria CeciliaMorigi, GiovannaFRENKELKONTOROVALONGRANGE INTERACTIONSSINE-GORDON KINKTRAPPED IONShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We theoretically analyse the equation of topological solitons in a chain of particles interacting via a repulsive power-law potential and confined by a periodic lattice. Starting from the discrete model, we perform a gradient expansion and obtain the kink equation in the continuum limit for a power-law exponent n ≥ 1. The power-law interaction modifies the sine-Gordon equation, giving rise to a rescaling of the coefficient multiplying the second derivative (the kink width) and to an additional integral term. We argue that the integral term does not affect the local properties of the kink, but it governs the behaviour at the asymptotics. The kink behaviour at the center is dominated by a sine-Gordon equation and its width tends to increase with the power law exponent. When the interaction is the Coulomb repulsion, in particular, the kink width depends logarithmically on the chain size. We define an appropriate thermodynamic limit and compare our results with existing studies performed for infinite chains. Our formalism allows one to systematically take into account the finite-size effects and also slowly varying external potentials, such as for instance the curvature in an ion trap.Fil: Landa, Haggai. Université Paris-Saclay; FranciaFil: Cormick, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Morigi, Giovanna. Universitat Saarland; AlemaniaMolecular Diversity Preservation International2020-05-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/137359Landa, Haggai; Cormick, Maria Cecilia; Morigi, Giovanna; Static kinks in chains of interacting atoms; Molecular Diversity Preservation International; Condensed Matter; 5; 2; 13-5-2020; 1-82410-3896CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2004.03823info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2410-3896/5/2/35info:eu-repo/semantics/altIdentifier/doi/10.3390/condmat5020035info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:01:15Zoai:ri.conicet.gov.ar:11336/137359instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:01:15.377CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Static kinks in chains of interacting atoms |
title |
Static kinks in chains of interacting atoms |
spellingShingle |
Static kinks in chains of interacting atoms Landa, Haggai FRENKEL KONTOROVA LONG RANGE INTERACTIONS SINE-GORDON KINK TRAPPED IONS |
title_short |
Static kinks in chains of interacting atoms |
title_full |
Static kinks in chains of interacting atoms |
title_fullStr |
Static kinks in chains of interacting atoms |
title_full_unstemmed |
Static kinks in chains of interacting atoms |
title_sort |
Static kinks in chains of interacting atoms |
dc.creator.none.fl_str_mv |
Landa, Haggai Cormick, Maria Cecilia Morigi, Giovanna |
author |
Landa, Haggai |
author_facet |
Landa, Haggai Cormick, Maria Cecilia Morigi, Giovanna |
author_role |
author |
author2 |
Cormick, Maria Cecilia Morigi, Giovanna |
author2_role |
author author |
dc.subject.none.fl_str_mv |
FRENKEL KONTOROVA LONG RANGE INTERACTIONS SINE-GORDON KINK TRAPPED IONS |
topic |
FRENKEL KONTOROVA LONG RANGE INTERACTIONS SINE-GORDON KINK TRAPPED IONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We theoretically analyse the equation of topological solitons in a chain of particles interacting via a repulsive power-law potential and confined by a periodic lattice. Starting from the discrete model, we perform a gradient expansion and obtain the kink equation in the continuum limit for a power-law exponent n ≥ 1. The power-law interaction modifies the sine-Gordon equation, giving rise to a rescaling of the coefficient multiplying the second derivative (the kink width) and to an additional integral term. We argue that the integral term does not affect the local properties of the kink, but it governs the behaviour at the asymptotics. The kink behaviour at the center is dominated by a sine-Gordon equation and its width tends to increase with the power law exponent. When the interaction is the Coulomb repulsion, in particular, the kink width depends logarithmically on the chain size. We define an appropriate thermodynamic limit and compare our results with existing studies performed for infinite chains. Our formalism allows one to systematically take into account the finite-size effects and also slowly varying external potentials, such as for instance the curvature in an ion trap. Fil: Landa, Haggai. Université Paris-Saclay; Francia Fil: Cormick, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina Fil: Morigi, Giovanna. Universitat Saarland; Alemania |
description |
We theoretically analyse the equation of topological solitons in a chain of particles interacting via a repulsive power-law potential and confined by a periodic lattice. Starting from the discrete model, we perform a gradient expansion and obtain the kink equation in the continuum limit for a power-law exponent n ≥ 1. The power-law interaction modifies the sine-Gordon equation, giving rise to a rescaling of the coefficient multiplying the second derivative (the kink width) and to an additional integral term. We argue that the integral term does not affect the local properties of the kink, but it governs the behaviour at the asymptotics. The kink behaviour at the center is dominated by a sine-Gordon equation and its width tends to increase with the power law exponent. When the interaction is the Coulomb repulsion, in particular, the kink width depends logarithmically on the chain size. We define an appropriate thermodynamic limit and compare our results with existing studies performed for infinite chains. Our formalism allows one to systematically take into account the finite-size effects and also slowly varying external potentials, such as for instance the curvature in an ion trap. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05-13 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/137359 Landa, Haggai; Cormick, Maria Cecilia; Morigi, Giovanna; Static kinks in chains of interacting atoms; Molecular Diversity Preservation International; Condensed Matter; 5; 2; 13-5-2020; 1-8 2410-3896 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/137359 |
identifier_str_mv |
Landa, Haggai; Cormick, Maria Cecilia; Morigi, Giovanna; Static kinks in chains of interacting atoms; Molecular Diversity Preservation International; Condensed Matter; 5; 2; 13-5-2020; 1-8 2410-3896 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2004.03823 info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2410-3896/5/2/35 info:eu-repo/semantics/altIdentifier/doi/10.3390/condmat5020035 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613803829886976 |
score |
13.070432 |