Nanofriction in Cavity Quantum Electrodynamics

Autores
Fogarty, T.; Cormick, Maria Cecilia; Landa, H.; Stojanovic, Vladimir M.; Demler, E.; Morigi, Giovanna
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics.
Fil: Fogarty, T.. Universitat Saarland; Alemania
Fil: Cormick, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Landa, H.. Université Paris Sud; Francia
Fil: Stojanovic, Vladimir M.. Harvard University; Estados Unidos
Fil: Demler, E.. Harvard University; Estados Unidos
Fil: Morigi, Giovanna. Universitat Saarland; Alemania
Materia
TRAPPED IONS
OPTICAL RESONATORS
FRICTION MODELS
LONG-RANGE INTERACTIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/52249

id CONICETDig_ddbbb9f974c1fc07a9c4df66145d391f
oai_identifier_str oai:ri.conicet.gov.ar:11336/52249
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nanofriction in Cavity Quantum ElectrodynamicsFogarty, T.Cormick, Maria CeciliaLanda, H.Stojanovic, Vladimir M.Demler, E.Morigi, GiovannaTRAPPED IONSOPTICAL RESONATORSFRICTION MODELSLONG-RANGE INTERACTIONShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics.Fil: Fogarty, T.. Universitat Saarland; AlemaniaFil: Cormick, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Landa, H.. Université Paris Sud; FranciaFil: Stojanovic, Vladimir M.. Harvard University; Estados UnidosFil: Demler, E.. Harvard University; Estados UnidosFil: Morigi, Giovanna. Universitat Saarland; AlemaniaAmerican Physical Society2015-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/52249Fogarty, T.; Cormick, Maria Cecilia; Landa, H.; Stojanovic, Vladimir M.; Demler, E.; et al.; Nanofriction in Cavity Quantum Electrodynamics; American Physical Society; Physical Review Letters; 115; 23; 1-12-2015; 233602-2336020031-90071079-7114CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.233602info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.115.233602info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:04Zoai:ri.conicet.gov.ar:11336/52249instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:04.834CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nanofriction in Cavity Quantum Electrodynamics
title Nanofriction in Cavity Quantum Electrodynamics
spellingShingle Nanofriction in Cavity Quantum Electrodynamics
Fogarty, T.
TRAPPED IONS
OPTICAL RESONATORS
FRICTION MODELS
LONG-RANGE INTERACTIONS
title_short Nanofriction in Cavity Quantum Electrodynamics
title_full Nanofriction in Cavity Quantum Electrodynamics
title_fullStr Nanofriction in Cavity Quantum Electrodynamics
title_full_unstemmed Nanofriction in Cavity Quantum Electrodynamics
title_sort Nanofriction in Cavity Quantum Electrodynamics
dc.creator.none.fl_str_mv Fogarty, T.
Cormick, Maria Cecilia
Landa, H.
Stojanovic, Vladimir M.
Demler, E.
Morigi, Giovanna
author Fogarty, T.
author_facet Fogarty, T.
Cormick, Maria Cecilia
Landa, H.
Stojanovic, Vladimir M.
Demler, E.
Morigi, Giovanna
author_role author
author2 Cormick, Maria Cecilia
Landa, H.
Stojanovic, Vladimir M.
Demler, E.
Morigi, Giovanna
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv TRAPPED IONS
OPTICAL RESONATORS
FRICTION MODELS
LONG-RANGE INTERACTIONS
topic TRAPPED IONS
OPTICAL RESONATORS
FRICTION MODELS
LONG-RANGE INTERACTIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics.
Fil: Fogarty, T.. Universitat Saarland; Alemania
Fil: Cormick, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Landa, H.. Université Paris Sud; Francia
Fil: Stojanovic, Vladimir M.. Harvard University; Estados Unidos
Fil: Demler, E.. Harvard University; Estados Unidos
Fil: Morigi, Giovanna. Universitat Saarland; Alemania
description The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics.
publishDate 2015
dc.date.none.fl_str_mv 2015-12-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/52249
Fogarty, T.; Cormick, Maria Cecilia; Landa, H.; Stojanovic, Vladimir M.; Demler, E.; et al.; Nanofriction in Cavity Quantum Electrodynamics; American Physical Society; Physical Review Letters; 115; 23; 1-12-2015; 233602-233602
0031-9007
1079-7114
CONICET Digital
CONICET
url http://hdl.handle.net/11336/52249
identifier_str_mv Fogarty, T.; Cormick, Maria Cecilia; Landa, H.; Stojanovic, Vladimir M.; Demler, E.; et al.; Nanofriction in Cavity Quantum Electrodynamics; American Physical Society; Physical Review Letters; 115; 23; 1-12-2015; 233602-233602
0031-9007
1079-7114
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.233602
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.115.233602
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614501553405952
score 13.070432