Nanofriction in Cavity Quantum Electrodynamics
- Autores
- Fogarty, T.; Cormick, Maria Cecilia; Landa, H.; Stojanovic, Vladimir M.; Demler, E.; Morigi, Giovanna
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics.
Fil: Fogarty, T.. Universitat Saarland; Alemania
Fil: Cormick, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Landa, H.. Université Paris Sud; Francia
Fil: Stojanovic, Vladimir M.. Harvard University; Estados Unidos
Fil: Demler, E.. Harvard University; Estados Unidos
Fil: Morigi, Giovanna. Universitat Saarland; Alemania - Materia
-
TRAPPED IONS
OPTICAL RESONATORS
FRICTION MODELS
LONG-RANGE INTERACTIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/52249
Ver los metadatos del registro completo
id |
CONICETDig_ddbbb9f974c1fc07a9c4df66145d391f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/52249 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Nanofriction in Cavity Quantum ElectrodynamicsFogarty, T.Cormick, Maria CeciliaLanda, H.Stojanovic, Vladimir M.Demler, E.Morigi, GiovannaTRAPPED IONSOPTICAL RESONATORSFRICTION MODELSLONG-RANGE INTERACTIONShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics.Fil: Fogarty, T.. Universitat Saarland; AlemaniaFil: Cormick, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Landa, H.. Université Paris Sud; FranciaFil: Stojanovic, Vladimir M.. Harvard University; Estados UnidosFil: Demler, E.. Harvard University; Estados UnidosFil: Morigi, Giovanna. Universitat Saarland; AlemaniaAmerican Physical Society2015-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/52249Fogarty, T.; Cormick, Maria Cecilia; Landa, H.; Stojanovic, Vladimir M.; Demler, E.; et al.; Nanofriction in Cavity Quantum Electrodynamics; American Physical Society; Physical Review Letters; 115; 23; 1-12-2015; 233602-2336020031-90071079-7114CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.233602info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.115.233602info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:46:04Zoai:ri.conicet.gov.ar:11336/52249instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:46:04.834CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Nanofriction in Cavity Quantum Electrodynamics |
title |
Nanofriction in Cavity Quantum Electrodynamics |
spellingShingle |
Nanofriction in Cavity Quantum Electrodynamics Fogarty, T. TRAPPED IONS OPTICAL RESONATORS FRICTION MODELS LONG-RANGE INTERACTIONS |
title_short |
Nanofriction in Cavity Quantum Electrodynamics |
title_full |
Nanofriction in Cavity Quantum Electrodynamics |
title_fullStr |
Nanofriction in Cavity Quantum Electrodynamics |
title_full_unstemmed |
Nanofriction in Cavity Quantum Electrodynamics |
title_sort |
Nanofriction in Cavity Quantum Electrodynamics |
dc.creator.none.fl_str_mv |
Fogarty, T. Cormick, Maria Cecilia Landa, H. Stojanovic, Vladimir M. Demler, E. Morigi, Giovanna |
author |
Fogarty, T. |
author_facet |
Fogarty, T. Cormick, Maria Cecilia Landa, H. Stojanovic, Vladimir M. Demler, E. Morigi, Giovanna |
author_role |
author |
author2 |
Cormick, Maria Cecilia Landa, H. Stojanovic, Vladimir M. Demler, E. Morigi, Giovanna |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
TRAPPED IONS OPTICAL RESONATORS FRICTION MODELS LONG-RANGE INTERACTIONS |
topic |
TRAPPED IONS OPTICAL RESONATORS FRICTION MODELS LONG-RANGE INTERACTIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics. Fil: Fogarty, T.. Universitat Saarland; Alemania Fil: Cormick, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina Fil: Landa, H.. Université Paris Sud; Francia Fil: Stojanovic, Vladimir M.. Harvard University; Estados Unidos Fil: Demler, E.. Harvard University; Estados Unidos Fil: Morigi, Giovanna. Universitat Saarland; Alemania |
description |
The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/52249 Fogarty, T.; Cormick, Maria Cecilia; Landa, H.; Stojanovic, Vladimir M.; Demler, E.; et al.; Nanofriction in Cavity Quantum Electrodynamics; American Physical Society; Physical Review Letters; 115; 23; 1-12-2015; 233602-233602 0031-9007 1079-7114 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/52249 |
identifier_str_mv |
Fogarty, T.; Cormick, Maria Cecilia; Landa, H.; Stojanovic, Vladimir M.; Demler, E.; et al.; Nanofriction in Cavity Quantum Electrodynamics; American Physical Society; Physical Review Letters; 115; 23; 1-12-2015; 233602-233602 0031-9007 1079-7114 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.233602 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevLett.115.233602 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614501553405952 |
score |
13.070432 |