Spherical tokamaks with a high current carrying plasma center column
- Autores
- Lampugnani, Leandro Gabriel; Garcia Martinez, Pablo Luis; Farengo, Ricardo
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Spherical tokamaks (STs) have many advantages from the perspective of a fusion reactor. A further improvement would be to replace the center post by a plasma center column (PCC). In this case, biased electrodes could be used to drive current along the PCC and produce the toroidal magnetic field. Moreover, the magnetic helicity injected (HI) by the PCC can be used to form and sustain the configuration, via magnetic relaxation. The magnetic structure and stability of these so-called ST-PCC configurations are studied in detail. In particular, it is shown that stable equilibria with tokamak-like safety factor (q) profiles can be obtained in the regime of high PCC current and moderate poloidal flux amplification. Using numerical simulations, the feasibility of forming and sustaining ST-PCC configurations via HI is demonstrated. The sustainment in this case involves a significant level of fluctuations and is shown to occur at a marginally stable configuration having a q = 1 surface in the ST. This behavior is in close analogy to that of spheromaks sustained by a coaxial plasma gun but presents two major differences. First, the current density in the open flux region (PCC) is significantly larger. Second, the mean current density gradient in the ST has the opposite sign, leading to q profiles with regular magnetic shear (i.e., q increases from the magnetic axis to the separatrix, as in tokamaks). When helicity injection is switched off, the fluctuations decay and nested, closed magnetic surfaces appear. This opens the possibility of using HI to form the ST-PCC and a combination of auxiliary current drive (neutral beams and/or RF) and high bootstrap current to sustain a fluctuation free configuration.
Fil: Lampugnani, Leandro Gabriel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina
Fil: Garcia Martinez, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Universidad Nacional de Río Negro. Sede Andina; Argentina
Fil: Farengo, Ricardo. Universidad Nacional de Río Negro. Sede Andina; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina - Materia
-
TOKAMAK
MHD
KINK
INSTABILITIES
HELICITY
INJECTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/112310
Ver los metadatos del registro completo
id |
CONICETDig_57731a3711fba73d3afef86ce9387803 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/112310 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Spherical tokamaks with a high current carrying plasma center columnLampugnani, Leandro GabrielGarcia Martinez, Pablo LuisFarengo, RicardoTOKAMAKMHDKINKINSTABILITIESHELICITYINJECTIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Spherical tokamaks (STs) have many advantages from the perspective of a fusion reactor. A further improvement would be to replace the center post by a plasma center column (PCC). In this case, biased electrodes could be used to drive current along the PCC and produce the toroidal magnetic field. Moreover, the magnetic helicity injected (HI) by the PCC can be used to form and sustain the configuration, via magnetic relaxation. The magnetic structure and stability of these so-called ST-PCC configurations are studied in detail. In particular, it is shown that stable equilibria with tokamak-like safety factor (q) profiles can be obtained in the regime of high PCC current and moderate poloidal flux amplification. Using numerical simulations, the feasibility of forming and sustaining ST-PCC configurations via HI is demonstrated. The sustainment in this case involves a significant level of fluctuations and is shown to occur at a marginally stable configuration having a q = 1 surface in the ST. This behavior is in close analogy to that of spheromaks sustained by a coaxial plasma gun but presents two major differences. First, the current density in the open flux region (PCC) is significantly larger. Second, the mean current density gradient in the ST has the opposite sign, leading to q profiles with regular magnetic shear (i.e., q increases from the magnetic axis to the separatrix, as in tokamaks). When helicity injection is switched off, the fluctuations decay and nested, closed magnetic surfaces appear. This opens the possibility of using HI to form the ST-PCC and a combination of auxiliary current drive (neutral beams and/or RF) and high bootstrap current to sustain a fluctuation free configuration.Fil: Lampugnani, Leandro Gabriel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Garcia Martinez, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Universidad Nacional de Río Negro. Sede Andina; ArgentinaFil: Farengo, Ricardo. Universidad Nacional de Río Negro. Sede Andina; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaAmerican Institute of Physics2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/112310Lampugnani, Leandro Gabriel; Garcia Martinez, Pablo Luis; Farengo, Ricardo; Spherical tokamaks with a high current carrying plasma center column; American Institute of Physics; Physics Of Plasmas; 25; 12; 12-2018; 1-131070-664XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.5066221info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5066221info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:40:45Zoai:ri.conicet.gov.ar:11336/112310instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:40:45.657CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Spherical tokamaks with a high current carrying plasma center column |
title |
Spherical tokamaks with a high current carrying plasma center column |
spellingShingle |
Spherical tokamaks with a high current carrying plasma center column Lampugnani, Leandro Gabriel TOKAMAK MHD KINK INSTABILITIES HELICITY INJECTION |
title_short |
Spherical tokamaks with a high current carrying plasma center column |
title_full |
Spherical tokamaks with a high current carrying plasma center column |
title_fullStr |
Spherical tokamaks with a high current carrying plasma center column |
title_full_unstemmed |
Spherical tokamaks with a high current carrying plasma center column |
title_sort |
Spherical tokamaks with a high current carrying plasma center column |
dc.creator.none.fl_str_mv |
Lampugnani, Leandro Gabriel Garcia Martinez, Pablo Luis Farengo, Ricardo |
author |
Lampugnani, Leandro Gabriel |
author_facet |
Lampugnani, Leandro Gabriel Garcia Martinez, Pablo Luis Farengo, Ricardo |
author_role |
author |
author2 |
Garcia Martinez, Pablo Luis Farengo, Ricardo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
TOKAMAK MHD KINK INSTABILITIES HELICITY INJECTION |
topic |
TOKAMAK MHD KINK INSTABILITIES HELICITY INJECTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Spherical tokamaks (STs) have many advantages from the perspective of a fusion reactor. A further improvement would be to replace the center post by a plasma center column (PCC). In this case, biased electrodes could be used to drive current along the PCC and produce the toroidal magnetic field. Moreover, the magnetic helicity injected (HI) by the PCC can be used to form and sustain the configuration, via magnetic relaxation. The magnetic structure and stability of these so-called ST-PCC configurations are studied in detail. In particular, it is shown that stable equilibria with tokamak-like safety factor (q) profiles can be obtained in the regime of high PCC current and moderate poloidal flux amplification. Using numerical simulations, the feasibility of forming and sustaining ST-PCC configurations via HI is demonstrated. The sustainment in this case involves a significant level of fluctuations and is shown to occur at a marginally stable configuration having a q = 1 surface in the ST. This behavior is in close analogy to that of spheromaks sustained by a coaxial plasma gun but presents two major differences. First, the current density in the open flux region (PCC) is significantly larger. Second, the mean current density gradient in the ST has the opposite sign, leading to q profiles with regular magnetic shear (i.e., q increases from the magnetic axis to the separatrix, as in tokamaks). When helicity injection is switched off, the fluctuations decay and nested, closed magnetic surfaces appear. This opens the possibility of using HI to form the ST-PCC and a combination of auxiliary current drive (neutral beams and/or RF) and high bootstrap current to sustain a fluctuation free configuration. Fil: Lampugnani, Leandro Gabriel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina Fil: Garcia Martinez, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Universidad Nacional de Río Negro. Sede Andina; Argentina Fil: Farengo, Ricardo. Universidad Nacional de Río Negro. Sede Andina; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina |
description |
Spherical tokamaks (STs) have many advantages from the perspective of a fusion reactor. A further improvement would be to replace the center post by a plasma center column (PCC). In this case, biased electrodes could be used to drive current along the PCC and produce the toroidal magnetic field. Moreover, the magnetic helicity injected (HI) by the PCC can be used to form and sustain the configuration, via magnetic relaxation. The magnetic structure and stability of these so-called ST-PCC configurations are studied in detail. In particular, it is shown that stable equilibria with tokamak-like safety factor (q) profiles can be obtained in the regime of high PCC current and moderate poloidal flux amplification. Using numerical simulations, the feasibility of forming and sustaining ST-PCC configurations via HI is demonstrated. The sustainment in this case involves a significant level of fluctuations and is shown to occur at a marginally stable configuration having a q = 1 surface in the ST. This behavior is in close analogy to that of spheromaks sustained by a coaxial plasma gun but presents two major differences. First, the current density in the open flux region (PCC) is significantly larger. Second, the mean current density gradient in the ST has the opposite sign, leading to q profiles with regular magnetic shear (i.e., q increases from the magnetic axis to the separatrix, as in tokamaks). When helicity injection is switched off, the fluctuations decay and nested, closed magnetic surfaces appear. This opens the possibility of using HI to form the ST-PCC and a combination of auxiliary current drive (neutral beams and/or RF) and high bootstrap current to sustain a fluctuation free configuration. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/112310 Lampugnani, Leandro Gabriel; Garcia Martinez, Pablo Luis; Farengo, Ricardo; Spherical tokamaks with a high current carrying plasma center column; American Institute of Physics; Physics Of Plasmas; 25; 12; 12-2018; 1-13 1070-664X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/112310 |
identifier_str_mv |
Lampugnani, Leandro Gabriel; Garcia Martinez, Pablo Luis; Farengo, Ricardo; Spherical tokamaks with a high current carrying plasma center column; American Institute of Physics; Physics Of Plasmas; 25; 12; 12-2018; 1-13 1070-664X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.5066221 info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5066221 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613289613459456 |
score |
13.069144 |