Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactions
- Autores
- Plastino, Ángel Ricardo; Wedemann, Roseli S.
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nonlinear Fokker-Planck equations (NLFPEs) constitute useful effective descriptions of some interacting many-body systems. Important instances of these nonlinear evolution equations are closely related to the thermostatistics based on the Sq power-law entropic functionals. Most applications of the connection between the NLFPE and the Sq entropies have focused on systems interacting through short-range forces. In the present contribution we re-visit the NLFPE approach to interacting systems in order to clarify the role played by the range of the interactions, and to explore the possibility of developing similar treatments for systems with long-range interactions, such as those corresponding to Newtonian gravitation. In particular, we consider a system of particles interacting via forces following the inverse square law and performing overdamped motion, that is described by a density obeying an integro-differential evolution equation that admits exact time-dependent solutions of the q-Gaussian form. These q-Gaussian solutions, which constitute a signature of Sq-thermostatistics, evolve in a similar but not identical way to the solutions of an appropriate nonlinear, power-law Fokker-Planck equation.
Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Bioinvestigaciones (Sede Junín); Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Departamento de Ciencias Básicas y Experimentales; Argentina
Fil: Wedemann, Roseli S.. Universidade do Estado de Rio do Janeiro; Brasil - Materia
-
GRAVITATION
LONG-RANGE INTERACTIONS
NONLINEAR FOKKER-PLANCK EQUATIONS
SQ ENTROPIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/168196
Ver los metadatos del registro completo
id |
CONICETDig_689e629f130033e4005f01ab2194d763 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/168196 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactionsPlastino, Ángel RicardoWedemann, Roseli S.GRAVITATIONLONG-RANGE INTERACTIONSNONLINEAR FOKKER-PLANCK EQUATIONSSQ ENTROPIEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Nonlinear Fokker-Planck equations (NLFPEs) constitute useful effective descriptions of some interacting many-body systems. Important instances of these nonlinear evolution equations are closely related to the thermostatistics based on the Sq power-law entropic functionals. Most applications of the connection between the NLFPE and the Sq entropies have focused on systems interacting through short-range forces. In the present contribution we re-visit the NLFPE approach to interacting systems in order to clarify the role played by the range of the interactions, and to explore the possibility of developing similar treatments for systems with long-range interactions, such as those corresponding to Newtonian gravitation. In particular, we consider a system of particles interacting via forces following the inverse square law and performing overdamped motion, that is described by a density obeying an integro-differential evolution equation that admits exact time-dependent solutions of the q-Gaussian form. These q-Gaussian solutions, which constitute a signature of Sq-thermostatistics, evolve in a similar but not identical way to the solutions of an appropriate nonlinear, power-law Fokker-Planck equation.Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Bioinvestigaciones (Sede Junín); Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Departamento de Ciencias Básicas y Experimentales; ArgentinaFil: Wedemann, Roseli S.. Universidade do Estado de Rio do Janeiro; BrasilMultidisciplinary Digital Publishing Institute2020-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/168196Plastino, Ángel Ricardo; Wedemann, Roseli S.; Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactions; Multidisciplinary Digital Publishing Institute; Entropy; 22; 2; 2-2020; 1-131099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/e22020163info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/22/2/163info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:11Zoai:ri.conicet.gov.ar:11336/168196instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:12.026CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactions |
title |
Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactions |
spellingShingle |
Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactions Plastino, Ángel Ricardo GRAVITATION LONG-RANGE INTERACTIONS NONLINEAR FOKKER-PLANCK EQUATIONS SQ ENTROPIES |
title_short |
Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactions |
title_full |
Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactions |
title_fullStr |
Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactions |
title_full_unstemmed |
Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactions |
title_sort |
Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactions |
dc.creator.none.fl_str_mv |
Plastino, Ángel Ricardo Wedemann, Roseli S. |
author |
Plastino, Ángel Ricardo |
author_facet |
Plastino, Ángel Ricardo Wedemann, Roseli S. |
author_role |
author |
author2 |
Wedemann, Roseli S. |
author2_role |
author |
dc.subject.none.fl_str_mv |
GRAVITATION LONG-RANGE INTERACTIONS NONLINEAR FOKKER-PLANCK EQUATIONS SQ ENTROPIES |
topic |
GRAVITATION LONG-RANGE INTERACTIONS NONLINEAR FOKKER-PLANCK EQUATIONS SQ ENTROPIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Nonlinear Fokker-Planck equations (NLFPEs) constitute useful effective descriptions of some interacting many-body systems. Important instances of these nonlinear evolution equations are closely related to the thermostatistics based on the Sq power-law entropic functionals. Most applications of the connection between the NLFPE and the Sq entropies have focused on systems interacting through short-range forces. In the present contribution we re-visit the NLFPE approach to interacting systems in order to clarify the role played by the range of the interactions, and to explore the possibility of developing similar treatments for systems with long-range interactions, such as those corresponding to Newtonian gravitation. In particular, we consider a system of particles interacting via forces following the inverse square law and performing overdamped motion, that is described by a density obeying an integro-differential evolution equation that admits exact time-dependent solutions of the q-Gaussian form. These q-Gaussian solutions, which constitute a signature of Sq-thermostatistics, evolve in a similar but not identical way to the solutions of an appropriate nonlinear, power-law Fokker-Planck equation. Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Bioinvestigaciones (Sede Junín); Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Departamento de Ciencias Básicas y Experimentales; Argentina Fil: Wedemann, Roseli S.. Universidade do Estado de Rio do Janeiro; Brasil |
description |
Nonlinear Fokker-Planck equations (NLFPEs) constitute useful effective descriptions of some interacting many-body systems. Important instances of these nonlinear evolution equations are closely related to the thermostatistics based on the Sq power-law entropic functionals. Most applications of the connection between the NLFPE and the Sq entropies have focused on systems interacting through short-range forces. In the present contribution we re-visit the NLFPE approach to interacting systems in order to clarify the role played by the range of the interactions, and to explore the possibility of developing similar treatments for systems with long-range interactions, such as those corresponding to Newtonian gravitation. In particular, we consider a system of particles interacting via forces following the inverse square law and performing overdamped motion, that is described by a density obeying an integro-differential evolution equation that admits exact time-dependent solutions of the q-Gaussian form. These q-Gaussian solutions, which constitute a signature of Sq-thermostatistics, evolve in a similar but not identical way to the solutions of an appropriate nonlinear, power-law Fokker-Planck equation. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/168196 Plastino, Ángel Ricardo; Wedemann, Roseli S.; Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactions; Multidisciplinary Digital Publishing Institute; Entropy; 22; 2; 2-2020; 1-13 1099-4300 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/168196 |
identifier_str_mv |
Plastino, Ángel Ricardo; Wedemann, Roseli S.; Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactions; Multidisciplinary Digital Publishing Institute; Entropy; 22; 2; 2-2020; 1-13 1099-4300 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3390/e22020163 info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/22/2/163 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613845149024256 |
score |
13.070432 |