Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactions

Autores
Plastino, Ángel Ricardo; Wedemann, Roseli S.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Nonlinear Fokker-Planck equations (NLFPEs) constitute useful effective descriptions of some interacting many-body systems. Important instances of these nonlinear evolution equations are closely related to the thermostatistics based on the Sq power-law entropic functionals. Most applications of the connection between the NLFPE and the Sq entropies have focused on systems interacting through short-range forces. In the present contribution we re-visit the NLFPE approach to interacting systems in order to clarify the role played by the range of the interactions, and to explore the possibility of developing similar treatments for systems with long-range interactions, such as those corresponding to Newtonian gravitation. In particular, we consider a system of particles interacting via forces following the inverse square law and performing overdamped motion, that is described by a density obeying an integro-differential evolution equation that admits exact time-dependent solutions of the q-Gaussian form. These q-Gaussian solutions, which constitute a signature of Sq-thermostatistics, evolve in a similar but not identical way to the solutions of an appropriate nonlinear, power-law Fokker-Planck equation.
Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Bioinvestigaciones (Sede Junín); Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Departamento de Ciencias Básicas y Experimentales; Argentina
Fil: Wedemann, Roseli S.. Universidade do Estado de Rio do Janeiro; Brasil
Materia
GRAVITATION
LONG-RANGE INTERACTIONS
NONLINEAR FOKKER-PLANCK EQUATIONS
SQ ENTROPIES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/168196

id CONICETDig_689e629f130033e4005f01ab2194d763
oai_identifier_str oai:ri.conicet.gov.ar:11336/168196
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactionsPlastino, Ángel RicardoWedemann, Roseli S.GRAVITATIONLONG-RANGE INTERACTIONSNONLINEAR FOKKER-PLANCK EQUATIONSSQ ENTROPIEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Nonlinear Fokker-Planck equations (NLFPEs) constitute useful effective descriptions of some interacting many-body systems. Important instances of these nonlinear evolution equations are closely related to the thermostatistics based on the Sq power-law entropic functionals. Most applications of the connection between the NLFPE and the Sq entropies have focused on systems interacting through short-range forces. In the present contribution we re-visit the NLFPE approach to interacting systems in order to clarify the role played by the range of the interactions, and to explore the possibility of developing similar treatments for systems with long-range interactions, such as those corresponding to Newtonian gravitation. In particular, we consider a system of particles interacting via forces following the inverse square law and performing overdamped motion, that is described by a density obeying an integro-differential evolution equation that admits exact time-dependent solutions of the q-Gaussian form. These q-Gaussian solutions, which constitute a signature of Sq-thermostatistics, evolve in a similar but not identical way to the solutions of an appropriate nonlinear, power-law Fokker-Planck equation.Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Bioinvestigaciones (Sede Junín); Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Departamento de Ciencias Básicas y Experimentales; ArgentinaFil: Wedemann, Roseli S.. Universidade do Estado de Rio do Janeiro; BrasilMultidisciplinary Digital Publishing Institute2020-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/168196Plastino, Ángel Ricardo; Wedemann, Roseli S.; Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactions; Multidisciplinary Digital Publishing Institute; Entropy; 22; 2; 2-2020; 1-131099-4300CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/e22020163info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/22/2/163info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:11Zoai:ri.conicet.gov.ar:11336/168196instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:12.026CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactions
title Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactions
spellingShingle Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactions
Plastino, Ángel Ricardo
GRAVITATION
LONG-RANGE INTERACTIONS
NONLINEAR FOKKER-PLANCK EQUATIONS
SQ ENTROPIES
title_short Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactions
title_full Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactions
title_fullStr Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactions
title_full_unstemmed Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactions
title_sort Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactions
dc.creator.none.fl_str_mv Plastino, Ángel Ricardo
Wedemann, Roseli S.
author Plastino, Ángel Ricardo
author_facet Plastino, Ángel Ricardo
Wedemann, Roseli S.
author_role author
author2 Wedemann, Roseli S.
author2_role author
dc.subject.none.fl_str_mv GRAVITATION
LONG-RANGE INTERACTIONS
NONLINEAR FOKKER-PLANCK EQUATIONS
SQ ENTROPIES
topic GRAVITATION
LONG-RANGE INTERACTIONS
NONLINEAR FOKKER-PLANCK EQUATIONS
SQ ENTROPIES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Nonlinear Fokker-Planck equations (NLFPEs) constitute useful effective descriptions of some interacting many-body systems. Important instances of these nonlinear evolution equations are closely related to the thermostatistics based on the Sq power-law entropic functionals. Most applications of the connection between the NLFPE and the Sq entropies have focused on systems interacting through short-range forces. In the present contribution we re-visit the NLFPE approach to interacting systems in order to clarify the role played by the range of the interactions, and to explore the possibility of developing similar treatments for systems with long-range interactions, such as those corresponding to Newtonian gravitation. In particular, we consider a system of particles interacting via forces following the inverse square law and performing overdamped motion, that is described by a density obeying an integro-differential evolution equation that admits exact time-dependent solutions of the q-Gaussian form. These q-Gaussian solutions, which constitute a signature of Sq-thermostatistics, evolve in a similar but not identical way to the solutions of an appropriate nonlinear, power-law Fokker-Planck equation.
Fil: Plastino, Ángel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Centro de Bioinvestigaciones (Sede Junín); Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Departamento de Ciencias Básicas y Experimentales; Argentina
Fil: Wedemann, Roseli S.. Universidade do Estado de Rio do Janeiro; Brasil
description Nonlinear Fokker-Planck equations (NLFPEs) constitute useful effective descriptions of some interacting many-body systems. Important instances of these nonlinear evolution equations are closely related to the thermostatistics based on the Sq power-law entropic functionals. Most applications of the connection between the NLFPE and the Sq entropies have focused on systems interacting through short-range forces. In the present contribution we re-visit the NLFPE approach to interacting systems in order to clarify the role played by the range of the interactions, and to explore the possibility of developing similar treatments for systems with long-range interactions, such as those corresponding to Newtonian gravitation. In particular, we consider a system of particles interacting via forces following the inverse square law and performing overdamped motion, that is described by a density obeying an integro-differential evolution equation that admits exact time-dependent solutions of the q-Gaussian form. These q-Gaussian solutions, which constitute a signature of Sq-thermostatistics, evolve in a similar but not identical way to the solutions of an appropriate nonlinear, power-law Fokker-Planck equation.
publishDate 2020
dc.date.none.fl_str_mv 2020-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/168196
Plastino, Ángel Ricardo; Wedemann, Roseli S.; Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactions; Multidisciplinary Digital Publishing Institute; Entropy; 22; 2; 2-2020; 1-13
1099-4300
CONICET Digital
CONICET
url http://hdl.handle.net/11336/168196
identifier_str_mv Plastino, Ángel Ricardo; Wedemann, Roseli S.; Nonlinear fokker-planck equation approach to systems of interacting particles: Thermostatistical features related to the range of the interactions; Multidisciplinary Digital Publishing Institute; Entropy; 22; 2; 2-2020; 1-13
1099-4300
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3390/e22020163
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1099-4300/22/2/163
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613845149024256
score 13.070432