Geología y estructura del Cerro Guanaquero, Río Diamante, Mendoza
- Autores
- Fuentes, Federico; Ramos, Victor Alberto
- Año de publicación
- 2008
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This study presents new data on a poorly known sector of the Cordillera Principal of Mendoza, in the headwaters of the Diamante river basin in Cerro Guanaquero and surrounding areas. The exposed units are divided in four main groups: marine and continental sedimentary Mesozoic sequences intensively folded and thrust, intermediate intrusives and volcanic rocks of Neogene age, Pliocene to Recent volcanic rocks of intermediate to basic composition, and unconsolidated Quaternary deposits. The Cerro Guanaquero, a Quaternary stratovolcano intensively eroded by Pleistocene glaciers, with its 4,841 meters is the most prominent orographic feature of the region. It is constituted essentially by pyroxene to biotite-bearing gray porphyritic andesites. Pyroclastic deposits, volcanic agglomerates, ignimbrites, and basalts are interbedded with the andesitic flows. The K-Ar date by whole-rock method of an andesite yielded an age of 1.4 ± 0.1 Ma. The Andean deformation begins as a thin-skinned fold and thrust belt, with detachment folds in the western areas that advanced to the east as propagation folds. The compression ended west of the 69º47´W with the inversion of the Mesozoic rift normal faults. Along this meridian the most important fault of the region is found, which has been correlated with the Malargüe fault, well developed south of the study area. This fault bounds the thin-skinned Aconcagua fold and trust belt, and the thick-skinned Malargüe fold and thrust belt, controlled by tectonic inversion. The volcanism was very intense in the Pliocene and Quaternary, associated with a steepening of the subducted oceanic slab, at the time that the region was passively uplifted. The resistance of the volcanic rocks to the erosion compared with the Mesozoic sedimentary rocks, plus the high erosive efficiency of the Pleistocene´s glaciers, gave place to the inversion of the relief. The erosion rate was exceptional, reaching at least 7 cm/100 years during the Quaternary.
This study presents new data on a poorly known sector of the Cordillera Principal of Mendoza, in the headwaters of the Diamante river basin in Cerro Guanaquero and surrounding areas. The exposed units are divided in four main groups: marine and continental sedimentary Mesozoic sequences intensively folded and thrust, intermediate intrusives and volcanic rocks of Neogene age, Pliocene to Recent volcanic rocks of intermediate to basic composition, and unconsolidated Quaternary deposits. The Cerro Guanaquero, a Quaternary stratovolcano intensively eroded by Pleistocene glaciers, with its 4,841 meters is the most prominent orographic feature of the region. It is constituted essentially by pyroxene to biotite-bearing gray porphyritic andesites. Pyroclastic deposits, volcanic agglomerates, ignimbrites, and basalts are interbedded with the andesitic flows. The K-Ar date by whole-rock method of an andesite yielded an age of 1.4 ± 0.1 Ma. The Andean deformation begins as a thin-skinned fold and thrust belt, with detachment folds in the western areas that advanced to the east as propagation folds. The compression ended west of the 69º47´W with the inversion of the Mesozoic rift normal faults. Along this meridian the most important fault of the region is found, which has been correlated with the Malargüe fault, well developed south of the study area. This fault bounds the thin-skinned Aconcagua fold and trust belt, and the thick-skinned Malargüe fold and trust belt, controlled by tectonic inversion. The volcanism was very intense in the Pliocene and Quaternary, associated with a steepening of the subducted oceanic slab, at the time that the region was passively uplifted. The resistance of the volcanic rocks to the erosion compared with the Mesozoic sedimentary rocks, plus the high erosive efficiency of the Pleistocene's glaciers, gave place to the inversion of the relief. The erosion rate was exceptional, reaching at least 7 cm/100 years during the Quaternary.
Fil: Fuentes, Federico. Universidad de Buenos Aires; Argentina
Fil: Ramos, Victor Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina - Materia
-
ANDES
VOLCANISMO
EXHUMACION
ESTRUCTURA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/93170
Ver los metadatos del registro completo
id |
CONICETDig_3c3ea8dad99f53c534b929e250a764dc |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/93170 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Geología y estructura del Cerro Guanaquero, Río Diamante, MendozaGeology of Cerro Guanaquero region, Diamante River, MendozaFuentes, FedericoRamos, Victor AlbertoANDESVOLCANISMOEXHUMACIONESTRUCTURAhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1This study presents new data on a poorly known sector of the Cordillera Principal of Mendoza, in the headwaters of the Diamante river basin in Cerro Guanaquero and surrounding areas. The exposed units are divided in four main groups: marine and continental sedimentary Mesozoic sequences intensively folded and thrust, intermediate intrusives and volcanic rocks of Neogene age, Pliocene to Recent volcanic rocks of intermediate to basic composition, and unconsolidated Quaternary deposits. The Cerro Guanaquero, a Quaternary stratovolcano intensively eroded by Pleistocene glaciers, with its 4,841 meters is the most prominent orographic feature of the region. It is constituted essentially by pyroxene to biotite-bearing gray porphyritic andesites. Pyroclastic deposits, volcanic agglomerates, ignimbrites, and basalts are interbedded with the andesitic flows. The K-Ar date by whole-rock method of an andesite yielded an age of 1.4 ± 0.1 Ma. The Andean deformation begins as a thin-skinned fold and thrust belt, with detachment folds in the western areas that advanced to the east as propagation folds. The compression ended west of the 69º47´W with the inversion of the Mesozoic rift normal faults. Along this meridian the most important fault of the region is found, which has been correlated with the Malargüe fault, well developed south of the study area. This fault bounds the thin-skinned Aconcagua fold and trust belt, and the thick-skinned Malargüe fold and thrust belt, controlled by tectonic inversion. The volcanism was very intense in the Pliocene and Quaternary, associated with a steepening of the subducted oceanic slab, at the time that the region was passively uplifted. The resistance of the volcanic rocks to the erosion compared with the Mesozoic sedimentary rocks, plus the high erosive efficiency of the Pleistocene´s glaciers, gave place to the inversion of the relief. The erosion rate was exceptional, reaching at least 7 cm/100 years during the Quaternary.This study presents new data on a poorly known sector of the Cordillera Principal of Mendoza, in the headwaters of the Diamante river basin in Cerro Guanaquero and surrounding areas. The exposed units are divided in four main groups: marine and continental sedimentary Mesozoic sequences intensively folded and thrust, intermediate intrusives and volcanic rocks of Neogene age, Pliocene to Recent volcanic rocks of intermediate to basic composition, and unconsolidated Quaternary deposits. The Cerro Guanaquero, a Quaternary stratovolcano intensively eroded by Pleistocene glaciers, with its 4,841 meters is the most prominent orographic feature of the region. It is constituted essentially by pyroxene to biotite-bearing gray porphyritic andesites. Pyroclastic deposits, volcanic agglomerates, ignimbrites, and basalts are interbedded with the andesitic flows. The K-Ar date by whole-rock method of an andesite yielded an age of 1.4 ± 0.1 Ma. The Andean deformation begins as a thin-skinned fold and thrust belt, with detachment folds in the western areas that advanced to the east as propagation folds. The compression ended west of the 69º47´W with the inversion of the Mesozoic rift normal faults. Along this meridian the most important fault of the region is found, which has been correlated with the Malargüe fault, well developed south of the study area. This fault bounds the thin-skinned Aconcagua fold and trust belt, and the thick-skinned Malargüe fold and trust belt, controlled by tectonic inversion. The volcanism was very intense in the Pliocene and Quaternary, associated with a steepening of the subducted oceanic slab, at the time that the region was passively uplifted. The resistance of the volcanic rocks to the erosion compared with the Mesozoic sedimentary rocks, plus the high erosive efficiency of the Pleistocene's glaciers, gave place to the inversion of the relief. The erosion rate was exceptional, reaching at least 7 cm/100 years during the Quaternary.Fil: Fuentes, Federico. Universidad de Buenos Aires; ArgentinaFil: Ramos, Victor Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaAsociación Geológica Argentina2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/93170Fuentes, Federico; Ramos, Victor Alberto; Geología y estructura del Cerro Guanaquero, Río Diamante, Mendoza; Asociación Geológica Argentina; Revista de la Asociación Geológica Argentina; 63; 1; 12-2008; 84-960004-48221851-8249CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/d57253info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:00:39Zoai:ri.conicet.gov.ar:11336/93170instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:00:40.113CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Geología y estructura del Cerro Guanaquero, Río Diamante, Mendoza Geology of Cerro Guanaquero region, Diamante River, Mendoza |
title |
Geología y estructura del Cerro Guanaquero, Río Diamante, Mendoza |
spellingShingle |
Geología y estructura del Cerro Guanaquero, Río Diamante, Mendoza Fuentes, Federico ANDES VOLCANISMO EXHUMACION ESTRUCTURA |
title_short |
Geología y estructura del Cerro Guanaquero, Río Diamante, Mendoza |
title_full |
Geología y estructura del Cerro Guanaquero, Río Diamante, Mendoza |
title_fullStr |
Geología y estructura del Cerro Guanaquero, Río Diamante, Mendoza |
title_full_unstemmed |
Geología y estructura del Cerro Guanaquero, Río Diamante, Mendoza |
title_sort |
Geología y estructura del Cerro Guanaquero, Río Diamante, Mendoza |
dc.creator.none.fl_str_mv |
Fuentes, Federico Ramos, Victor Alberto |
author |
Fuentes, Federico |
author_facet |
Fuentes, Federico Ramos, Victor Alberto |
author_role |
author |
author2 |
Ramos, Victor Alberto |
author2_role |
author |
dc.subject.none.fl_str_mv |
ANDES VOLCANISMO EXHUMACION ESTRUCTURA |
topic |
ANDES VOLCANISMO EXHUMACION ESTRUCTURA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This study presents new data on a poorly known sector of the Cordillera Principal of Mendoza, in the headwaters of the Diamante river basin in Cerro Guanaquero and surrounding areas. The exposed units are divided in four main groups: marine and continental sedimentary Mesozoic sequences intensively folded and thrust, intermediate intrusives and volcanic rocks of Neogene age, Pliocene to Recent volcanic rocks of intermediate to basic composition, and unconsolidated Quaternary deposits. The Cerro Guanaquero, a Quaternary stratovolcano intensively eroded by Pleistocene glaciers, with its 4,841 meters is the most prominent orographic feature of the region. It is constituted essentially by pyroxene to biotite-bearing gray porphyritic andesites. Pyroclastic deposits, volcanic agglomerates, ignimbrites, and basalts are interbedded with the andesitic flows. The K-Ar date by whole-rock method of an andesite yielded an age of 1.4 ± 0.1 Ma. The Andean deformation begins as a thin-skinned fold and thrust belt, with detachment folds in the western areas that advanced to the east as propagation folds. The compression ended west of the 69º47´W with the inversion of the Mesozoic rift normal faults. Along this meridian the most important fault of the region is found, which has been correlated with the Malargüe fault, well developed south of the study area. This fault bounds the thin-skinned Aconcagua fold and trust belt, and the thick-skinned Malargüe fold and thrust belt, controlled by tectonic inversion. The volcanism was very intense in the Pliocene and Quaternary, associated with a steepening of the subducted oceanic slab, at the time that the region was passively uplifted. The resistance of the volcanic rocks to the erosion compared with the Mesozoic sedimentary rocks, plus the high erosive efficiency of the Pleistocene´s glaciers, gave place to the inversion of the relief. The erosion rate was exceptional, reaching at least 7 cm/100 years during the Quaternary. This study presents new data on a poorly known sector of the Cordillera Principal of Mendoza, in the headwaters of the Diamante river basin in Cerro Guanaquero and surrounding areas. The exposed units are divided in four main groups: marine and continental sedimentary Mesozoic sequences intensively folded and thrust, intermediate intrusives and volcanic rocks of Neogene age, Pliocene to Recent volcanic rocks of intermediate to basic composition, and unconsolidated Quaternary deposits. The Cerro Guanaquero, a Quaternary stratovolcano intensively eroded by Pleistocene glaciers, with its 4,841 meters is the most prominent orographic feature of the region. It is constituted essentially by pyroxene to biotite-bearing gray porphyritic andesites. Pyroclastic deposits, volcanic agglomerates, ignimbrites, and basalts are interbedded with the andesitic flows. The K-Ar date by whole-rock method of an andesite yielded an age of 1.4 ± 0.1 Ma. The Andean deformation begins as a thin-skinned fold and thrust belt, with detachment folds in the western areas that advanced to the east as propagation folds. The compression ended west of the 69º47´W with the inversion of the Mesozoic rift normal faults. Along this meridian the most important fault of the region is found, which has been correlated with the Malargüe fault, well developed south of the study area. This fault bounds the thin-skinned Aconcagua fold and trust belt, and the thick-skinned Malargüe fold and trust belt, controlled by tectonic inversion. The volcanism was very intense in the Pliocene and Quaternary, associated with a steepening of the subducted oceanic slab, at the time that the region was passively uplifted. The resistance of the volcanic rocks to the erosion compared with the Mesozoic sedimentary rocks, plus the high erosive efficiency of the Pleistocene's glaciers, gave place to the inversion of the relief. The erosion rate was exceptional, reaching at least 7 cm/100 years during the Quaternary. Fil: Fuentes, Federico. Universidad de Buenos Aires; Argentina Fil: Ramos, Victor Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina |
description |
This study presents new data on a poorly known sector of the Cordillera Principal of Mendoza, in the headwaters of the Diamante river basin in Cerro Guanaquero and surrounding areas. The exposed units are divided in four main groups: marine and continental sedimentary Mesozoic sequences intensively folded and thrust, intermediate intrusives and volcanic rocks of Neogene age, Pliocene to Recent volcanic rocks of intermediate to basic composition, and unconsolidated Quaternary deposits. The Cerro Guanaquero, a Quaternary stratovolcano intensively eroded by Pleistocene glaciers, with its 4,841 meters is the most prominent orographic feature of the region. It is constituted essentially by pyroxene to biotite-bearing gray porphyritic andesites. Pyroclastic deposits, volcanic agglomerates, ignimbrites, and basalts are interbedded with the andesitic flows. The K-Ar date by whole-rock method of an andesite yielded an age of 1.4 ± 0.1 Ma. The Andean deformation begins as a thin-skinned fold and thrust belt, with detachment folds in the western areas that advanced to the east as propagation folds. The compression ended west of the 69º47´W with the inversion of the Mesozoic rift normal faults. Along this meridian the most important fault of the region is found, which has been correlated with the Malargüe fault, well developed south of the study area. This fault bounds the thin-skinned Aconcagua fold and trust belt, and the thick-skinned Malargüe fold and thrust belt, controlled by tectonic inversion. The volcanism was very intense in the Pliocene and Quaternary, associated with a steepening of the subducted oceanic slab, at the time that the region was passively uplifted. The resistance of the volcanic rocks to the erosion compared with the Mesozoic sedimentary rocks, plus the high erosive efficiency of the Pleistocene´s glaciers, gave place to the inversion of the relief. The erosion rate was exceptional, reaching at least 7 cm/100 years during the Quaternary. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/93170 Fuentes, Federico; Ramos, Victor Alberto; Geología y estructura del Cerro Guanaquero, Río Diamante, Mendoza; Asociación Geológica Argentina; Revista de la Asociación Geológica Argentina; 63; 1; 12-2008; 84-96 0004-4822 1851-8249 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/93170 |
identifier_str_mv |
Fuentes, Federico; Ramos, Victor Alberto; Geología y estructura del Cerro Guanaquero, Río Diamante, Mendoza; Asociación Geológica Argentina; Revista de la Asociación Geológica Argentina; 63; 1; 12-2008; 84-96 0004-4822 1851-8249 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://ref.scielo.org/d57253 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Asociación Geológica Argentina |
publisher.none.fl_str_mv |
Asociación Geológica Argentina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846782334667325440 |
score |
12.9626465 |