Nonarchimedean bornologies, cyclic homology and rigid cohomology
- Autores
- Cortiñas, Guillermo Horacio; Cuntz, Joachim; Meyer, Ralf; Tamme, Georg
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let V be a complete discrete valuation ring with residue field k and with fraction field K of characteristic 0. We clarify the analysis behind the Monsky–Washnitzer completion of a commutative V -algebra using spectral radius estimates for bounded subsets in complete bornological V -algebras. This leads us to a functorial chain complex for commutative k-algebras that computes Berthelot’s rigid cohomology. This chain complex is related to the periodic cyclic homology of certain complete bornological V -algebras.
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Cuntz, Joachim. Universität Münster; Alemania
Fil: Meyer, Ralf. Universität Göttingen; Alemania
Fil: Tamme, Georg. Universitat Regensburg; Alemania - Materia
-
Rigid cohomology
Cyclic homology
Bornological analysis
Nonarchimedean analysis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/89051
Ver los metadatos del registro completo
| id |
CONICETDig_3a674ea3970760cf7c45c8ceaf22c334 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/89051 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Nonarchimedean bornologies, cyclic homology and rigid cohomologyCortiñas, Guillermo HoracioCuntz, JoachimMeyer, RalfTamme, GeorgRigid cohomologyCyclic homologyBornological analysisNonarchimedean analysishttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let V be a complete discrete valuation ring with residue field k and with fraction field K of characteristic 0. We clarify the analysis behind the Monsky–Washnitzer completion of a commutative V -algebra using spectral radius estimates for bounded subsets in complete bornological V -algebras. This leads us to a functorial chain complex for commutative k-algebras that computes Berthelot’s rigid cohomology. This chain complex is related to the periodic cyclic homology of certain complete bornological V -algebras.Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Cuntz, Joachim. Universität Münster; AlemaniaFil: Meyer, Ralf. Universität Göttingen; AlemaniaFil: Tamme, Georg. Universitat Regensburg; AlemaniaUniversität Bielefeld2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89051Cortiñas, Guillermo Horacio; Cuntz, Joachim; Meyer, Ralf; Tamme, Georg; Nonarchimedean bornologies, cyclic homology and rigid cohomology; Universität Bielefeld; Documenta Mathematica; 23; 6-2018; 1197-12451431-0643CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.elibm.org/article/10011879info:eu-repo/semantics/altIdentifier/doi/10.25537/dm.2018v23.1197-1245info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:53:12Zoai:ri.conicet.gov.ar:11336/89051instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:53:12.951CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Nonarchimedean bornologies, cyclic homology and rigid cohomology |
| title |
Nonarchimedean bornologies, cyclic homology and rigid cohomology |
| spellingShingle |
Nonarchimedean bornologies, cyclic homology and rigid cohomology Cortiñas, Guillermo Horacio Rigid cohomology Cyclic homology Bornological analysis Nonarchimedean analysis |
| title_short |
Nonarchimedean bornologies, cyclic homology and rigid cohomology |
| title_full |
Nonarchimedean bornologies, cyclic homology and rigid cohomology |
| title_fullStr |
Nonarchimedean bornologies, cyclic homology and rigid cohomology |
| title_full_unstemmed |
Nonarchimedean bornologies, cyclic homology and rigid cohomology |
| title_sort |
Nonarchimedean bornologies, cyclic homology and rigid cohomology |
| dc.creator.none.fl_str_mv |
Cortiñas, Guillermo Horacio Cuntz, Joachim Meyer, Ralf Tamme, Georg |
| author |
Cortiñas, Guillermo Horacio |
| author_facet |
Cortiñas, Guillermo Horacio Cuntz, Joachim Meyer, Ralf Tamme, Georg |
| author_role |
author |
| author2 |
Cuntz, Joachim Meyer, Ralf Tamme, Georg |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Rigid cohomology Cyclic homology Bornological analysis Nonarchimedean analysis |
| topic |
Rigid cohomology Cyclic homology Bornological analysis Nonarchimedean analysis |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let V be a complete discrete valuation ring with residue field k and with fraction field K of characteristic 0. We clarify the analysis behind the Monsky–Washnitzer completion of a commutative V -algebra using spectral radius estimates for bounded subsets in complete bornological V -algebras. This leads us to a functorial chain complex for commutative k-algebras that computes Berthelot’s rigid cohomology. This chain complex is related to the periodic cyclic homology of certain complete bornological V -algebras. Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Cuntz, Joachim. Universität Münster; Alemania Fil: Meyer, Ralf. Universität Göttingen; Alemania Fil: Tamme, Georg. Universitat Regensburg; Alemania |
| description |
Let V be a complete discrete valuation ring with residue field k and with fraction field K of characteristic 0. We clarify the analysis behind the Monsky–Washnitzer completion of a commutative V -algebra using spectral radius estimates for bounded subsets in complete bornological V -algebras. This leads us to a functorial chain complex for commutative k-algebras that computes Berthelot’s rigid cohomology. This chain complex is related to the periodic cyclic homology of certain complete bornological V -algebras. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/89051 Cortiñas, Guillermo Horacio; Cuntz, Joachim; Meyer, Ralf; Tamme, Georg; Nonarchimedean bornologies, cyclic homology and rigid cohomology; Universität Bielefeld; Documenta Mathematica; 23; 6-2018; 1197-1245 1431-0643 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/89051 |
| identifier_str_mv |
Cortiñas, Guillermo Horacio; Cuntz, Joachim; Meyer, Ralf; Tamme, Georg; Nonarchimedean bornologies, cyclic homology and rigid cohomology; Universität Bielefeld; Documenta Mathematica; 23; 6-2018; 1197-1245 1431-0643 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.elibm.org/article/10011879 info:eu-repo/semantics/altIdentifier/doi/10.25537/dm.2018v23.1197-1245 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Universität Bielefeld |
| publisher.none.fl_str_mv |
Universität Bielefeld |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782227089719296 |
| score |
12.982451 |