Nonarchimedean bornologies, cyclic homology and rigid cohomology

Autores
Cortiñas, Guillermo Horacio; Cuntz, Joachim; Meyer, Ralf; Tamme, Georg
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let V be a complete discrete valuation ring with residue field k and with fraction field K of characteristic 0. We clarify the analysis behind the Monsky–Washnitzer completion of a commutative V -algebra using spectral radius estimates for bounded subsets in complete bornological V -algebras. This leads us to a functorial chain complex for commutative k-algebras that computes Berthelot’s rigid cohomology. This chain complex is related to the periodic cyclic homology of certain complete bornological V -algebras.
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Cuntz, Joachim. Universität Münster; Alemania
Fil: Meyer, Ralf. Universität Göttingen; Alemania
Fil: Tamme, Georg. Universitat Regensburg; Alemania
Materia
Rigid cohomology
Cyclic homology
Bornological analysis
Nonarchimedean analysis
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/89051

id CONICETDig_3a674ea3970760cf7c45c8ceaf22c334
oai_identifier_str oai:ri.conicet.gov.ar:11336/89051
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nonarchimedean bornologies, cyclic homology and rigid cohomologyCortiñas, Guillermo HoracioCuntz, JoachimMeyer, RalfTamme, GeorgRigid cohomologyCyclic homologyBornological analysisNonarchimedean analysishttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let V be a complete discrete valuation ring with residue field k and with fraction field K of characteristic 0. We clarify the analysis behind the Monsky–Washnitzer completion of a commutative V -algebra using spectral radius estimates for bounded subsets in complete bornological V -algebras. This leads us to a functorial chain complex for commutative k-algebras that computes Berthelot’s rigid cohomology. This chain complex is related to the periodic cyclic homology of certain complete bornological V -algebras.Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Cuntz, Joachim. Universität Münster; AlemaniaFil: Meyer, Ralf. Universität Göttingen; AlemaniaFil: Tamme, Georg. Universitat Regensburg; AlemaniaUniversität Bielefeld2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89051Cortiñas, Guillermo Horacio; Cuntz, Joachim; Meyer, Ralf; Tamme, Georg; Nonarchimedean bornologies, cyclic homology and rigid cohomology; Universität Bielefeld; Documenta Mathematica; 23; 6-2018; 1197-12451431-0643CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.elibm.org/article/10011879info:eu-repo/semantics/altIdentifier/doi/10.25537/dm.2018v23.1197-1245info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:53:12Zoai:ri.conicet.gov.ar:11336/89051instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:53:12.951CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nonarchimedean bornologies, cyclic homology and rigid cohomology
title Nonarchimedean bornologies, cyclic homology and rigid cohomology
spellingShingle Nonarchimedean bornologies, cyclic homology and rigid cohomology
Cortiñas, Guillermo Horacio
Rigid cohomology
Cyclic homology
Bornological analysis
Nonarchimedean analysis
title_short Nonarchimedean bornologies, cyclic homology and rigid cohomology
title_full Nonarchimedean bornologies, cyclic homology and rigid cohomology
title_fullStr Nonarchimedean bornologies, cyclic homology and rigid cohomology
title_full_unstemmed Nonarchimedean bornologies, cyclic homology and rigid cohomology
title_sort Nonarchimedean bornologies, cyclic homology and rigid cohomology
dc.creator.none.fl_str_mv Cortiñas, Guillermo Horacio
Cuntz, Joachim
Meyer, Ralf
Tamme, Georg
author Cortiñas, Guillermo Horacio
author_facet Cortiñas, Guillermo Horacio
Cuntz, Joachim
Meyer, Ralf
Tamme, Georg
author_role author
author2 Cuntz, Joachim
Meyer, Ralf
Tamme, Georg
author2_role author
author
author
dc.subject.none.fl_str_mv Rigid cohomology
Cyclic homology
Bornological analysis
Nonarchimedean analysis
topic Rigid cohomology
Cyclic homology
Bornological analysis
Nonarchimedean analysis
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let V be a complete discrete valuation ring with residue field k and with fraction field K of characteristic 0. We clarify the analysis behind the Monsky–Washnitzer completion of a commutative V -algebra using spectral radius estimates for bounded subsets in complete bornological V -algebras. This leads us to a functorial chain complex for commutative k-algebras that computes Berthelot’s rigid cohomology. This chain complex is related to the periodic cyclic homology of certain complete bornological V -algebras.
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Cuntz, Joachim. Universität Münster; Alemania
Fil: Meyer, Ralf. Universität Göttingen; Alemania
Fil: Tamme, Georg. Universitat Regensburg; Alemania
description Let V be a complete discrete valuation ring with residue field k and with fraction field K of characteristic 0. We clarify the analysis behind the Monsky–Washnitzer completion of a commutative V -algebra using spectral radius estimates for bounded subsets in complete bornological V -algebras. This leads us to a functorial chain complex for commutative k-algebras that computes Berthelot’s rigid cohomology. This chain complex is related to the periodic cyclic homology of certain complete bornological V -algebras.
publishDate 2018
dc.date.none.fl_str_mv 2018-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/89051
Cortiñas, Guillermo Horacio; Cuntz, Joachim; Meyer, Ralf; Tamme, Georg; Nonarchimedean bornologies, cyclic homology and rigid cohomology; Universität Bielefeld; Documenta Mathematica; 23; 6-2018; 1197-1245
1431-0643
CONICET Digital
CONICET
url http://hdl.handle.net/11336/89051
identifier_str_mv Cortiñas, Guillermo Horacio; Cuntz, Joachim; Meyer, Ralf; Tamme, Georg; Nonarchimedean bornologies, cyclic homology and rigid cohomology; Universität Bielefeld; Documenta Mathematica; 23; 6-2018; 1197-1245
1431-0643
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.elibm.org/article/10011879
info:eu-repo/semantics/altIdentifier/doi/10.25537/dm.2018v23.1197-1245
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universität Bielefeld
publisher.none.fl_str_mv Universität Bielefeld
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782227089719296
score 12.982451