Weak completions, bornologies and rigid cohomology

Autores
Cortiñas, Guillermo Horacio; Cuntz, Joachim; Meyer, Ralf; Tamme, Georg
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let V be a complete discrete valuation ring with residue field k of positive characteristic and with fraction field K of characteristic 0. We clarify the analysis behind the Monsky–Washnitzer completion of a commutative V-algebra using completions of bornological V-algebras. This leads us to a functorial chain complex for a finitely generated commutative algebra over the residue field k that computes its rigid cohomology in the sense of Berthelot.
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Cuntz, Joachim. Universitaet Muenster; Alemania
Fil: Meyer, Ralf. Universität Göttingen; Alemania
Fil: Tamme, Georg. Universitaet Regensburg; Alemania
Materia
ALGEBRAIC GEOMETRY
BORNOLOGICAL ALGEBRAS
CYCLIC HOMOLOGY
OVERCONVERGENT COMPLETIONS
POSITIVE CHARACTERISTIC
RIGID COHOMOLOGY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/88596

id CONICETDig_866a70ccbf695a3a55a4013d4a58fe2a
oai_identifier_str oai:ri.conicet.gov.ar:11336/88596
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Weak completions, bornologies and rigid cohomologyCortiñas, Guillermo HoracioCuntz, JoachimMeyer, RalfTamme, GeorgALGEBRAIC GEOMETRYBORNOLOGICAL ALGEBRASCYCLIC HOMOLOGYOVERCONVERGENT COMPLETIONSPOSITIVE CHARACTERISTICRIGID COHOMOLOGYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let V be a complete discrete valuation ring with residue field k of positive characteristic and with fraction field K of characteristic 0. We clarify the analysis behind the Monsky–Washnitzer completion of a commutative V-algebra using completions of bornological V-algebras. This leads us to a functorial chain complex for a finitely generated commutative algebra over the residue field k that computes its rigid cohomology in the sense of Berthelot.Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Cuntz, Joachim. Universitaet Muenster; AlemaniaFil: Meyer, Ralf. Universität Göttingen; AlemaniaFil: Tamme, Georg. Universitaet Regensburg; AlemaniaElsevier Science2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88596Cortiñas, Guillermo Horacio; Cuntz, Joachim; Meyer, Ralf; Tamme, Georg; Weak completions, bornologies and rigid cohomology; Elsevier Science; Journal Of Geometry And Physics; 129; 7-2018; 192-1990393-0440CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0393044018301256info:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomphys.2018.03.005info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:11:28Zoai:ri.conicet.gov.ar:11336/88596instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:11:29.245CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Weak completions, bornologies and rigid cohomology
title Weak completions, bornologies and rigid cohomology
spellingShingle Weak completions, bornologies and rigid cohomology
Cortiñas, Guillermo Horacio
ALGEBRAIC GEOMETRY
BORNOLOGICAL ALGEBRAS
CYCLIC HOMOLOGY
OVERCONVERGENT COMPLETIONS
POSITIVE CHARACTERISTIC
RIGID COHOMOLOGY
title_short Weak completions, bornologies and rigid cohomology
title_full Weak completions, bornologies and rigid cohomology
title_fullStr Weak completions, bornologies and rigid cohomology
title_full_unstemmed Weak completions, bornologies and rigid cohomology
title_sort Weak completions, bornologies and rigid cohomology
dc.creator.none.fl_str_mv Cortiñas, Guillermo Horacio
Cuntz, Joachim
Meyer, Ralf
Tamme, Georg
author Cortiñas, Guillermo Horacio
author_facet Cortiñas, Guillermo Horacio
Cuntz, Joachim
Meyer, Ralf
Tamme, Georg
author_role author
author2 Cuntz, Joachim
Meyer, Ralf
Tamme, Georg
author2_role author
author
author
dc.subject.none.fl_str_mv ALGEBRAIC GEOMETRY
BORNOLOGICAL ALGEBRAS
CYCLIC HOMOLOGY
OVERCONVERGENT COMPLETIONS
POSITIVE CHARACTERISTIC
RIGID COHOMOLOGY
topic ALGEBRAIC GEOMETRY
BORNOLOGICAL ALGEBRAS
CYCLIC HOMOLOGY
OVERCONVERGENT COMPLETIONS
POSITIVE CHARACTERISTIC
RIGID COHOMOLOGY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let V be a complete discrete valuation ring with residue field k of positive characteristic and with fraction field K of characteristic 0. We clarify the analysis behind the Monsky–Washnitzer completion of a commutative V-algebra using completions of bornological V-algebras. This leads us to a functorial chain complex for a finitely generated commutative algebra over the residue field k that computes its rigid cohomology in the sense of Berthelot.
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Cuntz, Joachim. Universitaet Muenster; Alemania
Fil: Meyer, Ralf. Universität Göttingen; Alemania
Fil: Tamme, Georg. Universitaet Regensburg; Alemania
description Let V be a complete discrete valuation ring with residue field k of positive characteristic and with fraction field K of characteristic 0. We clarify the analysis behind the Monsky–Washnitzer completion of a commutative V-algebra using completions of bornological V-algebras. This leads us to a functorial chain complex for a finitely generated commutative algebra over the residue field k that computes its rigid cohomology in the sense of Berthelot.
publishDate 2018
dc.date.none.fl_str_mv 2018-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/88596
Cortiñas, Guillermo Horacio; Cuntz, Joachim; Meyer, Ralf; Tamme, Georg; Weak completions, bornologies and rigid cohomology; Elsevier Science; Journal Of Geometry And Physics; 129; 7-2018; 192-199
0393-0440
CONICET Digital
CONICET
url http://hdl.handle.net/11336/88596
identifier_str_mv Cortiñas, Guillermo Horacio; Cuntz, Joachim; Meyer, Ralf; Tamme, Georg; Weak completions, bornologies and rigid cohomology; Elsevier Science; Journal Of Geometry And Physics; 129; 7-2018; 192-199
0393-0440
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0393044018301256
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.geomphys.2018.03.005
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781493246951424
score 12.982451