Cyclic homology of Hopf crossed products

Autores
Carboni, Graciela; Guccione, Juan Jose; Guccione, Juan Jose
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We obtain a mixed complex, simpler than the canonical one, given the Hochschild, cyclic, negative and periodic homology of a crossed product E = A#f H, where H is an arbitrary Hopf algebra and f is a convolution invertible cocycle with values in A. We actually work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A which is stable under the action of H, and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homology of E relative to K. As an application we obtain two spectral sequences converging to the cyclic homology of E relative to K. The first one works in the general setting and the second one (which generalizes those previously found by several authors) works when f takes its values in K.
Fil: Carboni, Graciela. Universidad de Buenos Aires. Ciclo Básico Común; Argentina
Fil: Guccione, Juan Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Fil: Guccione, Juan Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Materia
Cyclic Homology
Crossed Products
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19431

id CONICETDig_20df052a9ae7dd8f3dbb9b1dccd7d456
oai_identifier_str oai:ri.conicet.gov.ar:11336/19431
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Cyclic homology of Hopf crossed productsCarboni, GracielaGuccione, Juan JoseGuccione, Juan JoseCyclic HomologyCrossed Productshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We obtain a mixed complex, simpler than the canonical one, given the Hochschild, cyclic, negative and periodic homology of a crossed product E = A#f H, where H is an arbitrary Hopf algebra and f is a convolution invertible cocycle with values in A. We actually work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A which is stable under the action of H, and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homology of E relative to K. As an application we obtain two spectral sequences converging to the cyclic homology of E relative to K. The first one works in the general setting and the second one (which generalizes those previously found by several authors) works when f takes its values in K.Fil: Carboni, Graciela. Universidad de Buenos Aires. Ciclo Básico Común; ArgentinaFil: Guccione, Juan Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaFil: Guccione, Juan Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; ArgentinaElsevier2009-09-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19431Carboni, Graciela; Guccione, Juan Jose; Guccione, Juan Jose; Cyclic homology of Hopf crossed products; Elsevier; Advances in Mathematics; 223; 3; 30-9-2009; 840-8720001-8708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0001870809002874info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2009.09.008info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:36:00Zoai:ri.conicet.gov.ar:11336/19431instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:36:00.833CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Cyclic homology of Hopf crossed products
title Cyclic homology of Hopf crossed products
spellingShingle Cyclic homology of Hopf crossed products
Carboni, Graciela
Cyclic Homology
Crossed Products
title_short Cyclic homology of Hopf crossed products
title_full Cyclic homology of Hopf crossed products
title_fullStr Cyclic homology of Hopf crossed products
title_full_unstemmed Cyclic homology of Hopf crossed products
title_sort Cyclic homology of Hopf crossed products
dc.creator.none.fl_str_mv Carboni, Graciela
Guccione, Juan Jose
Guccione, Juan Jose
author Carboni, Graciela
author_facet Carboni, Graciela
Guccione, Juan Jose
author_role author
author2 Guccione, Juan Jose
author2_role author
dc.subject.none.fl_str_mv Cyclic Homology
Crossed Products
topic Cyclic Homology
Crossed Products
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We obtain a mixed complex, simpler than the canonical one, given the Hochschild, cyclic, negative and periodic homology of a crossed product E = A#f H, where H is an arbitrary Hopf algebra and f is a convolution invertible cocycle with values in A. We actually work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A which is stable under the action of H, and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homology of E relative to K. As an application we obtain two spectral sequences converging to the cyclic homology of E relative to K. The first one works in the general setting and the second one (which generalizes those previously found by several authors) works when f takes its values in K.
Fil: Carboni, Graciela. Universidad de Buenos Aires. Ciclo Básico Común; Argentina
Fil: Guccione, Juan Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
Fil: Guccione, Juan Jose. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
description We obtain a mixed complex, simpler than the canonical one, given the Hochschild, cyclic, negative and periodic homology of a crossed product E = A#f H, where H is an arbitrary Hopf algebra and f is a convolution invertible cocycle with values in A. We actually work in the more general context of relative cyclic homology. Specifically, we consider a subalgebra K of A which is stable under the action of H, and we find a mixed complex computing the Hochschild, cyclic, negative and periodic homology of E relative to K. As an application we obtain two spectral sequences converging to the cyclic homology of E relative to K. The first one works in the general setting and the second one (which generalizes those previously found by several authors) works when f takes its values in K.
publishDate 2009
dc.date.none.fl_str_mv 2009-09-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19431
Carboni, Graciela; Guccione, Juan Jose; Guccione, Juan Jose; Cyclic homology of Hopf crossed products; Elsevier; Advances in Mathematics; 223; 3; 30-9-2009; 840-872
0001-8708
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19431
identifier_str_mv Carboni, Graciela; Guccione, Juan Jose; Guccione, Juan Jose; Cyclic homology of Hopf crossed products; Elsevier; Advances in Mathematics; 223; 3; 30-9-2009; 840-872
0001-8708
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0001870809002874
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aim.2009.09.008
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614379894472704
score 13.070432