Learning to Control pH Processes at Multiple Time Scales
- Autores
- Syafiie, S.; Tadeo, F.; Martínez, Ernesto Carlos
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This article presents a solution to pH control based on model-free learning control (MFLC). The MFLC technique is proposed because the algorithm gives a general solution for acid-base systems, yet is simple enough for implementation in existing control hardware. MFLC is based on reinforcement learning (RL), which is learning by direct interaction with the environment. The MFLC algorithm is model free and satisfying incremental control, input and output constraints. A novel solution of MFLC using multi-step actions (MSA) is presented: actions on multiple time scales consist of several identical primitive actions. This solves the problem of determining a suitable fixed time scale to select control actions so as to trade off accuracy in control against learning complexity. An application of MFLC to a pH process at laboratory scale is presented, showing that the proposed MFLC learns to control adequately the neutralization process, and maintain the process in the goal band. Also, the MFLC controller smoothly manipulates the control signal.
Fil: Syafiie, S.. Universidad de Valladolid; España
Fil: Tadeo, F.. Universidad de Valladolid; España
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
Ph Control
Learning Control
Reinforcement Learning
Wastewater Treatment - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/83824
Ver los metadatos del registro completo
id |
CONICETDig_38ac3c24258fa768de7759c14660ba7d |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/83824 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Learning to Control pH Processes at Multiple Time ScalesSyafiie, S.Tadeo, F.Martínez, Ernesto CarlosPh ControlLearning ControlReinforcement LearningWastewater Treatmenthttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2This article presents a solution to pH control based on model-free learning control (MFLC). The MFLC technique is proposed because the algorithm gives a general solution for acid-base systems, yet is simple enough for implementation in existing control hardware. MFLC is based on reinforcement learning (RL), which is learning by direct interaction with the environment. The MFLC algorithm is model free and satisfying incremental control, input and output constraints. A novel solution of MFLC using multi-step actions (MSA) is presented: actions on multiple time scales consist of several identical primitive actions. This solves the problem of determining a suitable fixed time scale to select control actions so as to trade off accuracy in control against learning complexity. An application of MFLC to a pH process at laboratory scale is presented, showing that the proposed MFLC learns to control adequately the neutralization process, and maintain the process in the goal band. Also, the MFLC controller smoothly manipulates the control signal.Fil: Syafiie, S.. Universidad de Valladolid; EspañaFil: Tadeo, F.. Universidad de Valladolid; EspañaFil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaThe Berkeley Electronic Press2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/83824Syafiie, S.; Tadeo, F.; Martínez, Ernesto Carlos; Learning to Control pH Processes at Multiple Time Scales; The Berkeley Electronic Press; Chemical Product and Process Modeling; 2; 1; 12-2007; 1-71934-2659CONICET DigitalCONICETenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:29:48Zoai:ri.conicet.gov.ar:11336/83824instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:29:48.833CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Learning to Control pH Processes at Multiple Time Scales |
title |
Learning to Control pH Processes at Multiple Time Scales |
spellingShingle |
Learning to Control pH Processes at Multiple Time Scales Syafiie, S. Ph Control Learning Control Reinforcement Learning Wastewater Treatment |
title_short |
Learning to Control pH Processes at Multiple Time Scales |
title_full |
Learning to Control pH Processes at Multiple Time Scales |
title_fullStr |
Learning to Control pH Processes at Multiple Time Scales |
title_full_unstemmed |
Learning to Control pH Processes at Multiple Time Scales |
title_sort |
Learning to Control pH Processes at Multiple Time Scales |
dc.creator.none.fl_str_mv |
Syafiie, S. Tadeo, F. Martínez, Ernesto Carlos |
author |
Syafiie, S. |
author_facet |
Syafiie, S. Tadeo, F. Martínez, Ernesto Carlos |
author_role |
author |
author2 |
Tadeo, F. Martínez, Ernesto Carlos |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ph Control Learning Control Reinforcement Learning Wastewater Treatment |
topic |
Ph Control Learning Control Reinforcement Learning Wastewater Treatment |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This article presents a solution to pH control based on model-free learning control (MFLC). The MFLC technique is proposed because the algorithm gives a general solution for acid-base systems, yet is simple enough for implementation in existing control hardware. MFLC is based on reinforcement learning (RL), which is learning by direct interaction with the environment. The MFLC algorithm is model free and satisfying incremental control, input and output constraints. A novel solution of MFLC using multi-step actions (MSA) is presented: actions on multiple time scales consist of several identical primitive actions. This solves the problem of determining a suitable fixed time scale to select control actions so as to trade off accuracy in control against learning complexity. An application of MFLC to a pH process at laboratory scale is presented, showing that the proposed MFLC learns to control adequately the neutralization process, and maintain the process in the goal band. Also, the MFLC controller smoothly manipulates the control signal. Fil: Syafiie, S.. Universidad de Valladolid; España Fil: Tadeo, F.. Universidad de Valladolid; España Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
description |
This article presents a solution to pH control based on model-free learning control (MFLC). The MFLC technique is proposed because the algorithm gives a general solution for acid-base systems, yet is simple enough for implementation in existing control hardware. MFLC is based on reinforcement learning (RL), which is learning by direct interaction with the environment. The MFLC algorithm is model free and satisfying incremental control, input and output constraints. A novel solution of MFLC using multi-step actions (MSA) is presented: actions on multiple time scales consist of several identical primitive actions. This solves the problem of determining a suitable fixed time scale to select control actions so as to trade off accuracy in control against learning complexity. An application of MFLC to a pH process at laboratory scale is presented, showing that the proposed MFLC learns to control adequately the neutralization process, and maintain the process in the goal band. Also, the MFLC controller smoothly manipulates the control signal. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/83824 Syafiie, S.; Tadeo, F.; Martínez, Ernesto Carlos; Learning to Control pH Processes at Multiple Time Scales; The Berkeley Electronic Press; Chemical Product and Process Modeling; 2; 1; 12-2007; 1-7 1934-2659 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/83824 |
identifier_str_mv |
Syafiie, S.; Tadeo, F.; Martínez, Ernesto Carlos; Learning to Control pH Processes at Multiple Time Scales; The Berkeley Electronic Press; Chemical Product and Process Modeling; 2; 1; 12-2007; 1-7 1934-2659 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
The Berkeley Electronic Press |
publisher.none.fl_str_mv |
The Berkeley Electronic Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614305189724160 |
score |
13.069144 |