Real-time rescheduling of production systems using relational reinforcement learning

Autores
Palombarini, Jorge Andrés; Martínez, Ernesto Carlos
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Most scheduling methodologies developed until now have laid down good theoretical foundations, but there is still the need for real-time rescheduling methods that can work effectively in disruption management. In this work, a novel approach for automatic generation of rescheduling knowledge using Relational Reinforcement Learning (RRL) is presented. Relational representations of schedule states and repair operators enable to encode in a compact way and use in real-time rescheduling knowledge learned through intensive simulations of state transitions. An industrial example where a current schedule must be repaired following the arrival of a new order is discussed using a prototype application – SmartGantt®- for interactive rescheduling in a reactive way. SmartGantt® demonstrates the advantages of resorting to RRL and abstract states for real-time rescheduling. A small number of training episodes are required to define a repair policy which can handle on the fly events such as order insertion, resource break-down, raw material delay or shortage and rush order arrivals using a sequence of operators to achieve a selected goal.
Fil: Palombarini, Jorge Andrés. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Materia
REINFORCEMENT LEARNING
RESCHEDULING
PRODUCTION SYSTEMS
RELATIONAL ABSTRACTIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/70280

id CONICETDig_c9a4bae9e01a4609ed081c696a2e4c56
oai_identifier_str oai:ri.conicet.gov.ar:11336/70280
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Real-time rescheduling of production systems using relational reinforcement learningPalombarini, Jorge AndrésMartínez, Ernesto CarlosREINFORCEMENT LEARNINGRESCHEDULINGPRODUCTION SYSTEMSRELATIONAL ABSTRACTIONShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Most scheduling methodologies developed until now have laid down good theoretical foundations, but there is still the need for real-time rescheduling methods that can work effectively in disruption management. In this work, a novel approach for automatic generation of rescheduling knowledge using Relational Reinforcement Learning (RRL) is presented. Relational representations of schedule states and repair operators enable to encode in a compact way and use in real-time rescheduling knowledge learned through intensive simulations of state transitions. An industrial example where a current schedule must be repaired following the arrival of a new order is discussed using a prototype application – SmartGantt®- for interactive rescheduling in a reactive way. SmartGantt® demonstrates the advantages of resorting to RRL and abstract states for real-time rescheduling. A small number of training episodes are required to define a repair policy which can handle on the fly events such as order insertion, resource break-down, raw material delay or shortage and rush order arrivals using a sequence of operators to achieve a selected goal.Fil: Palombarini, Jorge Andrés. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; ArgentinaFil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaQUALIS CAPES (UFSC)2011-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/70280Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; Real-time rescheduling of production systems using relational reinforcement learning; QUALIS CAPES (UFSC); Iberoamerican Journal of Industrial Engineering; 3; 2; 12-2011; 136-1532175-8018CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://periodicos.incubadora.ufsc.br/index.php/IJIE/article/view/1568info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:22:30Zoai:ri.conicet.gov.ar:11336/70280instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:22:31.111CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Real-time rescheduling of production systems using relational reinforcement learning
title Real-time rescheduling of production systems using relational reinforcement learning
spellingShingle Real-time rescheduling of production systems using relational reinforcement learning
Palombarini, Jorge Andrés
REINFORCEMENT LEARNING
RESCHEDULING
PRODUCTION SYSTEMS
RELATIONAL ABSTRACTIONS
title_short Real-time rescheduling of production systems using relational reinforcement learning
title_full Real-time rescheduling of production systems using relational reinforcement learning
title_fullStr Real-time rescheduling of production systems using relational reinforcement learning
title_full_unstemmed Real-time rescheduling of production systems using relational reinforcement learning
title_sort Real-time rescheduling of production systems using relational reinforcement learning
dc.creator.none.fl_str_mv Palombarini, Jorge Andrés
Martínez, Ernesto Carlos
author Palombarini, Jorge Andrés
author_facet Palombarini, Jorge Andrés
Martínez, Ernesto Carlos
author_role author
author2 Martínez, Ernesto Carlos
author2_role author
dc.subject.none.fl_str_mv REINFORCEMENT LEARNING
RESCHEDULING
PRODUCTION SYSTEMS
RELATIONAL ABSTRACTIONS
topic REINFORCEMENT LEARNING
RESCHEDULING
PRODUCTION SYSTEMS
RELATIONAL ABSTRACTIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Most scheduling methodologies developed until now have laid down good theoretical foundations, but there is still the need for real-time rescheduling methods that can work effectively in disruption management. In this work, a novel approach for automatic generation of rescheduling knowledge using Relational Reinforcement Learning (RRL) is presented. Relational representations of schedule states and repair operators enable to encode in a compact way and use in real-time rescheduling knowledge learned through intensive simulations of state transitions. An industrial example where a current schedule must be repaired following the arrival of a new order is discussed using a prototype application – SmartGantt®- for interactive rescheduling in a reactive way. SmartGantt® demonstrates the advantages of resorting to RRL and abstract states for real-time rescheduling. A small number of training episodes are required to define a repair policy which can handle on the fly events such as order insertion, resource break-down, raw material delay or shortage and rush order arrivals using a sequence of operators to achieve a selected goal.
Fil: Palombarini, Jorge Andrés. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
description Most scheduling methodologies developed until now have laid down good theoretical foundations, but there is still the need for real-time rescheduling methods that can work effectively in disruption management. In this work, a novel approach for automatic generation of rescheduling knowledge using Relational Reinforcement Learning (RRL) is presented. Relational representations of schedule states and repair operators enable to encode in a compact way and use in real-time rescheduling knowledge learned through intensive simulations of state transitions. An industrial example where a current schedule must be repaired following the arrival of a new order is discussed using a prototype application – SmartGantt®- for interactive rescheduling in a reactive way. SmartGantt® demonstrates the advantages of resorting to RRL and abstract states for real-time rescheduling. A small number of training episodes are required to define a repair policy which can handle on the fly events such as order insertion, resource break-down, raw material delay or shortage and rush order arrivals using a sequence of operators to achieve a selected goal.
publishDate 2011
dc.date.none.fl_str_mv 2011-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/70280
Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; Real-time rescheduling of production systems using relational reinforcement learning; QUALIS CAPES (UFSC); Iberoamerican Journal of Industrial Engineering; 3; 2; 12-2011; 136-153
2175-8018
CONICET Digital
CONICET
url http://hdl.handle.net/11336/70280
identifier_str_mv Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; Real-time rescheduling of production systems using relational reinforcement learning; QUALIS CAPES (UFSC); Iberoamerican Journal of Industrial Engineering; 3; 2; 12-2011; 136-153
2175-8018
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://periodicos.incubadora.ufsc.br/index.php/IJIE/article/view/1568
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv QUALIS CAPES (UFSC)
publisher.none.fl_str_mv QUALIS CAPES (UFSC)
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614216882847744
score 13.069144