Model-free control based on reinforcement learning for a wastewater treatment problem
- Autores
- Syafiie, S.; Tadeo, F.; Martínez, Ernesto Carlos; Alvarez, T.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This article presents a proposal, based on the model-free learning control (MFLC) approach, for the control of the advanced oxidation process in wastewater plants. This is prompted by the fact that many organic pollutants in industrial wastewaters are resistant to conventional biological treatments, and the fact that advanced oxidation processes, controlled with learning controllers measuring the oxidation-reduction potential (ORP), give a cost-effective solution. The proposed automation strategy denoted MFLC-MSA is based on the integration of reinforcement learning with multiple step actions. This enables the most adequate control strategy to be learned directly from the process response to selected control inputs. Thus, the proposed methodology is satisfactory for oxidation processes of wastewater treatment plants, where the development of an adequate model for control design is usually too costly. The algorithm proposed has been tested in a lab pilot plant, where phenolic wastewater is oxidized to carboxylic acids and carbon dioxide. The obtained experimental results show that the proposed MFLC-MSA strategy can achieve good performance to guarantee on-specification discharge at maximum degradation rate using readily available measurements such as pH and ORP, inferential measurements of oxidation kinetics and peroxide consumption, respectively.
Fil: Syafiie, S.. Universiti Putra Malaysia; Malasia
Fil: Tadeo, F.. Universidad de Valladolid; España
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Alvarez, T.. Universidad de Valladolid; España - Materia
-
Wastewater Treatment
Reinforcement Learning
Intelligent Control
Fenton Process - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/70209
Ver los metadatos del registro completo
id |
CONICETDig_0ce1bfc30760f2b367d591a67ae91808 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/70209 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Model-free control based on reinforcement learning for a wastewater treatment problemSyafiie, S.Tadeo, F.Martínez, Ernesto CarlosAlvarez, T.Wastewater TreatmentReinforcement LearningIntelligent ControlFenton Processhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This article presents a proposal, based on the model-free learning control (MFLC) approach, for the control of the advanced oxidation process in wastewater plants. This is prompted by the fact that many organic pollutants in industrial wastewaters are resistant to conventional biological treatments, and the fact that advanced oxidation processes, controlled with learning controllers measuring the oxidation-reduction potential (ORP), give a cost-effective solution. The proposed automation strategy denoted MFLC-MSA is based on the integration of reinforcement learning with multiple step actions. This enables the most adequate control strategy to be learned directly from the process response to selected control inputs. Thus, the proposed methodology is satisfactory for oxidation processes of wastewater treatment plants, where the development of an adequate model for control design is usually too costly. The algorithm proposed has been tested in a lab pilot plant, where phenolic wastewater is oxidized to carboxylic acids and carbon dioxide. The obtained experimental results show that the proposed MFLC-MSA strategy can achieve good performance to guarantee on-specification discharge at maximum degradation rate using readily available measurements such as pH and ORP, inferential measurements of oxidation kinetics and peroxide consumption, respectively.Fil: Syafiie, S.. Universiti Putra Malaysia; MalasiaFil: Tadeo, F.. Universidad de Valladolid; EspañaFil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Alvarez, T.. Universidad de Valladolid; EspañaElsevier Science2011-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/70209Syafiie, S.; Tadeo, F.; Martínez, Ernesto Carlos; Alvarez, T.; Model-free control based on reinforcement learning for a wastewater treatment problem; Elsevier Science; Applied Soft Computing; 11; 1; 1-2011; 73-821568-4946CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.asoc.2009.10.018info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:26:21Zoai:ri.conicet.gov.ar:11336/70209instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:26:21.985CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Model-free control based on reinforcement learning for a wastewater treatment problem |
title |
Model-free control based on reinforcement learning for a wastewater treatment problem |
spellingShingle |
Model-free control based on reinforcement learning for a wastewater treatment problem Syafiie, S. Wastewater Treatment Reinforcement Learning Intelligent Control Fenton Process |
title_short |
Model-free control based on reinforcement learning for a wastewater treatment problem |
title_full |
Model-free control based on reinforcement learning for a wastewater treatment problem |
title_fullStr |
Model-free control based on reinforcement learning for a wastewater treatment problem |
title_full_unstemmed |
Model-free control based on reinforcement learning for a wastewater treatment problem |
title_sort |
Model-free control based on reinforcement learning for a wastewater treatment problem |
dc.creator.none.fl_str_mv |
Syafiie, S. Tadeo, F. Martínez, Ernesto Carlos Alvarez, T. |
author |
Syafiie, S. |
author_facet |
Syafiie, S. Tadeo, F. Martínez, Ernesto Carlos Alvarez, T. |
author_role |
author |
author2 |
Tadeo, F. Martínez, Ernesto Carlos Alvarez, T. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Wastewater Treatment Reinforcement Learning Intelligent Control Fenton Process |
topic |
Wastewater Treatment Reinforcement Learning Intelligent Control Fenton Process |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This article presents a proposal, based on the model-free learning control (MFLC) approach, for the control of the advanced oxidation process in wastewater plants. This is prompted by the fact that many organic pollutants in industrial wastewaters are resistant to conventional biological treatments, and the fact that advanced oxidation processes, controlled with learning controllers measuring the oxidation-reduction potential (ORP), give a cost-effective solution. The proposed automation strategy denoted MFLC-MSA is based on the integration of reinforcement learning with multiple step actions. This enables the most adequate control strategy to be learned directly from the process response to selected control inputs. Thus, the proposed methodology is satisfactory for oxidation processes of wastewater treatment plants, where the development of an adequate model for control design is usually too costly. The algorithm proposed has been tested in a lab pilot plant, where phenolic wastewater is oxidized to carboxylic acids and carbon dioxide. The obtained experimental results show that the proposed MFLC-MSA strategy can achieve good performance to guarantee on-specification discharge at maximum degradation rate using readily available measurements such as pH and ORP, inferential measurements of oxidation kinetics and peroxide consumption, respectively. Fil: Syafiie, S.. Universiti Putra Malaysia; Malasia Fil: Tadeo, F.. Universidad de Valladolid; España Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Alvarez, T.. Universidad de Valladolid; España |
description |
This article presents a proposal, based on the model-free learning control (MFLC) approach, for the control of the advanced oxidation process in wastewater plants. This is prompted by the fact that many organic pollutants in industrial wastewaters are resistant to conventional biological treatments, and the fact that advanced oxidation processes, controlled with learning controllers measuring the oxidation-reduction potential (ORP), give a cost-effective solution. The proposed automation strategy denoted MFLC-MSA is based on the integration of reinforcement learning with multiple step actions. This enables the most adequate control strategy to be learned directly from the process response to selected control inputs. Thus, the proposed methodology is satisfactory for oxidation processes of wastewater treatment plants, where the development of an adequate model for control design is usually too costly. The algorithm proposed has been tested in a lab pilot plant, where phenolic wastewater is oxidized to carboxylic acids and carbon dioxide. The obtained experimental results show that the proposed MFLC-MSA strategy can achieve good performance to guarantee on-specification discharge at maximum degradation rate using readily available measurements such as pH and ORP, inferential measurements of oxidation kinetics and peroxide consumption, respectively. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/70209 Syafiie, S.; Tadeo, F.; Martínez, Ernesto Carlos; Alvarez, T.; Model-free control based on reinforcement learning for a wastewater treatment problem; Elsevier Science; Applied Soft Computing; 11; 1; 1-2011; 73-82 1568-4946 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/70209 |
identifier_str_mv |
Syafiie, S.; Tadeo, F.; Martínez, Ernesto Carlos; Alvarez, T.; Model-free control based on reinforcement learning for a wastewater treatment problem; Elsevier Science; Applied Soft Computing; 11; 1; 1-2011; 73-82 1568-4946 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.asoc.2009.10.018 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614264897142784 |
score |
13.069144 |