Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning
- Autores
- Carlucho, Ignacio; de Paula, Mariano; Wang, Sen; Petillot, Yvan; Acosta, Gerardo Gabriel
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Low-level control of autonomous underwater vehicles (AUVs) has been extensively addressed by classical control techniques. However, the variable operating conditions and hostile environments faced by AUVs have driven researchers towards the formulation of adaptive control approaches. The reinforcement learning (RL) paradigm is a powerful framework which has been applied in different formulations of adaptive control strategies for AUVs. However, the limitations of RL approaches have lead towards the emergence of deep reinforcement learning which has become an attractive and promising framework for developing real adaptive control strategies to solve complex control problems for autonomous systems. However, most of the existing applications of deep RL use video images to train the decision making artificial agent but obtaining camera images only for an AUV control purpose could be costly in terms of energy consumption. Moreover, the rewards are not easily obtained directly from the video frames. In this work we develop a deep RL framework for adaptive control applications of AUVs based on an actor-critic goal-oriented deep RL architecture, which takes the available raw sensory information as input and as output the continuous control actions which are the low-level commands for the AUV's thrusters. Experiments on a real AUV demonstrate the applicability of the stated deep RL approach for an autonomous robot control problem.
Fil: Carlucho, Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina
Fil: de Paula, Mariano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina
Fil: Wang, Sen. Heriot-Watt University; Reino Unido
Fil: Petillot, Yvan. Heriot-Watt University; Reino Unido
Fil: Acosta, Gerardo Gabriel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina - Materia
-
ADAPTIVE LOW-LEVEL CONTROL
AUTONOMOUS ROBOT
AUV
DEEP REINFORCEMENT LEARNING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88075
Ver los metadatos del registro completo
id |
CONICETDig_366187f7ffa1e0d56cfe55843a05d3a2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88075 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learningCarlucho, Ignaciode Paula, MarianoWang, SenPetillot, YvanAcosta, Gerardo GabrielADAPTIVE LOW-LEVEL CONTROLAUTONOMOUS ROBOTAUVDEEP REINFORCEMENT LEARNINGhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Low-level control of autonomous underwater vehicles (AUVs) has been extensively addressed by classical control techniques. However, the variable operating conditions and hostile environments faced by AUVs have driven researchers towards the formulation of adaptive control approaches. The reinforcement learning (RL) paradigm is a powerful framework which has been applied in different formulations of adaptive control strategies for AUVs. However, the limitations of RL approaches have lead towards the emergence of deep reinforcement learning which has become an attractive and promising framework for developing real adaptive control strategies to solve complex control problems for autonomous systems. However, most of the existing applications of deep RL use video images to train the decision making artificial agent but obtaining camera images only for an AUV control purpose could be costly in terms of energy consumption. Moreover, the rewards are not easily obtained directly from the video frames. In this work we develop a deep RL framework for adaptive control applications of AUVs based on an actor-critic goal-oriented deep RL architecture, which takes the available raw sensory information as input and as output the continuous control actions which are the low-level commands for the AUV's thrusters. Experiments on a real AUV demonstrate the applicability of the stated deep RL approach for an autonomous robot control problem.Fil: Carlucho, Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; ArgentinaFil: de Paula, Mariano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; ArgentinaFil: Wang, Sen. Heriot-Watt University; Reino UnidoFil: Petillot, Yvan. Heriot-Watt University; Reino UnidoFil: Acosta, Gerardo Gabriel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; ArgentinaElsevier Science2018-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88075Carlucho, Ignacio; de Paula, Mariano; Wang, Sen; Petillot, Yvan; Acosta, Gerardo Gabriel; Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning; Elsevier Science; Robotics And Autonomous Systems; 107; 9-2018; 71-860921-8890CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0921889018301519info:eu-repo/semantics/altIdentifier/doi/10.1016/j.robot.2018.05.016info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:06:52Zoai:ri.conicet.gov.ar:11336/88075instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:06:52.501CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning |
title |
Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning |
spellingShingle |
Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning Carlucho, Ignacio ADAPTIVE LOW-LEVEL CONTROL AUTONOMOUS ROBOT AUV DEEP REINFORCEMENT LEARNING |
title_short |
Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning |
title_full |
Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning |
title_fullStr |
Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning |
title_full_unstemmed |
Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning |
title_sort |
Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning |
dc.creator.none.fl_str_mv |
Carlucho, Ignacio de Paula, Mariano Wang, Sen Petillot, Yvan Acosta, Gerardo Gabriel |
author |
Carlucho, Ignacio |
author_facet |
Carlucho, Ignacio de Paula, Mariano Wang, Sen Petillot, Yvan Acosta, Gerardo Gabriel |
author_role |
author |
author2 |
de Paula, Mariano Wang, Sen Petillot, Yvan Acosta, Gerardo Gabriel |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
ADAPTIVE LOW-LEVEL CONTROL AUTONOMOUS ROBOT AUV DEEP REINFORCEMENT LEARNING |
topic |
ADAPTIVE LOW-LEVEL CONTROL AUTONOMOUS ROBOT AUV DEEP REINFORCEMENT LEARNING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Low-level control of autonomous underwater vehicles (AUVs) has been extensively addressed by classical control techniques. However, the variable operating conditions and hostile environments faced by AUVs have driven researchers towards the formulation of adaptive control approaches. The reinforcement learning (RL) paradigm is a powerful framework which has been applied in different formulations of adaptive control strategies for AUVs. However, the limitations of RL approaches have lead towards the emergence of deep reinforcement learning which has become an attractive and promising framework for developing real adaptive control strategies to solve complex control problems for autonomous systems. However, most of the existing applications of deep RL use video images to train the decision making artificial agent but obtaining camera images only for an AUV control purpose could be costly in terms of energy consumption. Moreover, the rewards are not easily obtained directly from the video frames. In this work we develop a deep RL framework for adaptive control applications of AUVs based on an actor-critic goal-oriented deep RL architecture, which takes the available raw sensory information as input and as output the continuous control actions which are the low-level commands for the AUV's thrusters. Experiments on a real AUV demonstrate the applicability of the stated deep RL approach for an autonomous robot control problem. Fil: Carlucho, Ignacio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina Fil: de Paula, Mariano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina Fil: Wang, Sen. Heriot-Watt University; Reino Unido Fil: Petillot, Yvan. Heriot-Watt University; Reino Unido Fil: Acosta, Gerardo Gabriel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires. - Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires; Argentina |
description |
Low-level control of autonomous underwater vehicles (AUVs) has been extensively addressed by classical control techniques. However, the variable operating conditions and hostile environments faced by AUVs have driven researchers towards the formulation of adaptive control approaches. The reinforcement learning (RL) paradigm is a powerful framework which has been applied in different formulations of adaptive control strategies for AUVs. However, the limitations of RL approaches have lead towards the emergence of deep reinforcement learning which has become an attractive and promising framework for developing real adaptive control strategies to solve complex control problems for autonomous systems. However, most of the existing applications of deep RL use video images to train the decision making artificial agent but obtaining camera images only for an AUV control purpose could be costly in terms of energy consumption. Moreover, the rewards are not easily obtained directly from the video frames. In this work we develop a deep RL framework for adaptive control applications of AUVs based on an actor-critic goal-oriented deep RL architecture, which takes the available raw sensory information as input and as output the continuous control actions which are the low-level commands for the AUV's thrusters. Experiments on a real AUV demonstrate the applicability of the stated deep RL approach for an autonomous robot control problem. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88075 Carlucho, Ignacio; de Paula, Mariano; Wang, Sen; Petillot, Yvan; Acosta, Gerardo Gabriel; Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning; Elsevier Science; Robotics And Autonomous Systems; 107; 9-2018; 71-86 0921-8890 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/88075 |
identifier_str_mv |
Carlucho, Ignacio; de Paula, Mariano; Wang, Sen; Petillot, Yvan; Acosta, Gerardo Gabriel; Adaptive low-level control of autonomous underwater vehicles using deep reinforcement learning; Elsevier Science; Robotics And Autonomous Systems; 107; 9-2018; 71-86 0921-8890 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0921889018301519 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.robot.2018.05.016 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083212118327296 |
score |
12.891075 |