Task Rescheduling using Relational Reinforcement Learning
- Autores
- Palombarini, Jorge Andrés; Martínez, Ernesto Carlos
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Generating and representing knowledge about heuristics for repair-based scheduling is a key issue in any rescheduling strategy to deal with unforeseen events and disturbances. Resorting to a feature-based propositional representation of schedule states is very inefficient and generalization to unseen states is highly unreliable whereas knowledge transfer to similar scheduling domains is difficult. In contrast, first-order relational representations enable the exploitation of the existence of domain objects and relations over these objects, and enable the use of quantification over objectives (goals), action effects and properties of states. In this work, a novel approach which formalizes the re-scheduling problem as a Relational Markov Decision Process integrating first-order (deictic)representations of (abstract) schedule states is presented. Task rescheduling is solved using a relational reinforcement learning algorithm implemented in a real-time prototype system which makes room for an interactive scheduling strategy that successfully handle different repair goals and disruption scenarios. An industrial case study vividly shows how relational abstractions provide compact repair policies with minor computational efforts.
Fil: Palombarini, Jorge Andrés. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
RESCHEDULING
RELATIONAL REINFORCEMENT LEARNING
MANUFACTURING CONTROL
RELATIONAL ABSTRACTIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/70276
Ver los metadatos del registro completo
id |
CONICETDig_042f3fa0c97d354ace99cbba3e0e1944 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/70276 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Task Rescheduling using Relational Reinforcement LearningPalombarini, Jorge AndrésMartínez, Ernesto CarlosRESCHEDULINGRELATIONAL REINFORCEMENT LEARNINGMANUFACTURING CONTROLRELATIONAL ABSTRACTIONShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Generating and representing knowledge about heuristics for repair-based scheduling is a key issue in any rescheduling strategy to deal with unforeseen events and disturbances. Resorting to a feature-based propositional representation of schedule states is very inefficient and generalization to unseen states is highly unreliable whereas knowledge transfer to similar scheduling domains is difficult. In contrast, first-order relational representations enable the exploitation of the existence of domain objects and relations over these objects, and enable the use of quantification over objectives (goals), action effects and properties of states. In this work, a novel approach which formalizes the re-scheduling problem as a Relational Markov Decision Process integrating first-order (deictic)representations of (abstract) schedule states is presented. Task rescheduling is solved using a relational reinforcement learning algorithm implemented in a real-time prototype system which makes room for an interactive scheduling strategy that successfully handle different repair goals and disruption scenarios. An industrial case study vividly shows how relational abstractions provide compact repair policies with minor computational efforts.Fil: Palombarini, Jorge Andrés. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; ArgentinaFil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaIBERAMIA2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/70276Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; Task Rescheduling using Relational Reinforcement Learning; IBERAMIA; Inteligencia Artificial; 50; 12-2012; 57-681137-36011988-3064CONICET DigitalCONICETenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:59Zoai:ri.conicet.gov.ar:11336/70276instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:59.962CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Task Rescheduling using Relational Reinforcement Learning |
title |
Task Rescheduling using Relational Reinforcement Learning |
spellingShingle |
Task Rescheduling using Relational Reinforcement Learning Palombarini, Jorge Andrés RESCHEDULING RELATIONAL REINFORCEMENT LEARNING MANUFACTURING CONTROL RELATIONAL ABSTRACTIONS |
title_short |
Task Rescheduling using Relational Reinforcement Learning |
title_full |
Task Rescheduling using Relational Reinforcement Learning |
title_fullStr |
Task Rescheduling using Relational Reinforcement Learning |
title_full_unstemmed |
Task Rescheduling using Relational Reinforcement Learning |
title_sort |
Task Rescheduling using Relational Reinforcement Learning |
dc.creator.none.fl_str_mv |
Palombarini, Jorge Andrés Martínez, Ernesto Carlos |
author |
Palombarini, Jorge Andrés |
author_facet |
Palombarini, Jorge Andrés Martínez, Ernesto Carlos |
author_role |
author |
author2 |
Martínez, Ernesto Carlos |
author2_role |
author |
dc.subject.none.fl_str_mv |
RESCHEDULING RELATIONAL REINFORCEMENT LEARNING MANUFACTURING CONTROL RELATIONAL ABSTRACTIONS |
topic |
RESCHEDULING RELATIONAL REINFORCEMENT LEARNING MANUFACTURING CONTROL RELATIONAL ABSTRACTIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Generating and representing knowledge about heuristics for repair-based scheduling is a key issue in any rescheduling strategy to deal with unforeseen events and disturbances. Resorting to a feature-based propositional representation of schedule states is very inefficient and generalization to unseen states is highly unreliable whereas knowledge transfer to similar scheduling domains is difficult. In contrast, first-order relational representations enable the exploitation of the existence of domain objects and relations over these objects, and enable the use of quantification over objectives (goals), action effects and properties of states. In this work, a novel approach which formalizes the re-scheduling problem as a Relational Markov Decision Process integrating first-order (deictic)representations of (abstract) schedule states is presented. Task rescheduling is solved using a relational reinforcement learning algorithm implemented in a real-time prototype system which makes room for an interactive scheduling strategy that successfully handle different repair goals and disruption scenarios. An industrial case study vividly shows how relational abstractions provide compact repair policies with minor computational efforts. Fil: Palombarini, Jorge Andrés. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
description |
Generating and representing knowledge about heuristics for repair-based scheduling is a key issue in any rescheduling strategy to deal with unforeseen events and disturbances. Resorting to a feature-based propositional representation of schedule states is very inefficient and generalization to unseen states is highly unreliable whereas knowledge transfer to similar scheduling domains is difficult. In contrast, first-order relational representations enable the exploitation of the existence of domain objects and relations over these objects, and enable the use of quantification over objectives (goals), action effects and properties of states. In this work, a novel approach which formalizes the re-scheduling problem as a Relational Markov Decision Process integrating first-order (deictic)representations of (abstract) schedule states is presented. Task rescheduling is solved using a relational reinforcement learning algorithm implemented in a real-time prototype system which makes room for an interactive scheduling strategy that successfully handle different repair goals and disruption scenarios. An industrial case study vividly shows how relational abstractions provide compact repair policies with minor computational efforts. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/70276 Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; Task Rescheduling using Relational Reinforcement Learning; IBERAMIA; Inteligencia Artificial; 50; 12-2012; 57-68 1137-3601 1988-3064 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/70276 |
identifier_str_mv |
Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; Task Rescheduling using Relational Reinforcement Learning; IBERAMIA; Inteligencia Artificial; 50; 12-2012; 57-68 1137-3601 1988-3064 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IBERAMIA |
publisher.none.fl_str_mv |
IBERAMIA |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613323790745600 |
score |
13.069144 |