Task Rescheduling using Relational Reinforcement Learning

Autores
Palombarini, Jorge Andrés; Martínez, Ernesto Carlos
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Generating and representing knowledge about heuristics for repair-based scheduling is a key issue in any rescheduling strategy to deal with unforeseen events and disturbances. Resorting to a feature-based propositional representation of schedule states is very inefficient and generalization to unseen states is highly unreliable whereas knowledge transfer to similar scheduling domains is difficult. In contrast, first-order relational representations enable the exploitation of the existence of domain objects and relations over these objects, and enable the use of quantification over objectives (goals), action effects and properties of states. In this work, a novel approach which formalizes the re-scheduling problem as a Relational Markov Decision Process integrating first-order (deictic)representations of (abstract) schedule states is presented. Task rescheduling is solved using a relational reinforcement learning algorithm implemented in a real-time prototype system which makes room for an interactive scheduling strategy that successfully handle different repair goals and disruption scenarios. An industrial case study vividly shows how relational abstractions provide compact repair policies with minor computational efforts.
Fil: Palombarini, Jorge Andrés. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Materia
RESCHEDULING
RELATIONAL REINFORCEMENT LEARNING
MANUFACTURING CONTROL
RELATIONAL ABSTRACTIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/70276

id CONICETDig_042f3fa0c97d354ace99cbba3e0e1944
oai_identifier_str oai:ri.conicet.gov.ar:11336/70276
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Task Rescheduling using Relational Reinforcement LearningPalombarini, Jorge AndrésMartínez, Ernesto CarlosRESCHEDULINGRELATIONAL REINFORCEMENT LEARNINGMANUFACTURING CONTROLRELATIONAL ABSTRACTIONShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Generating and representing knowledge about heuristics for repair-based scheduling is a key issue in any rescheduling strategy to deal with unforeseen events and disturbances. Resorting to a feature-based propositional representation of schedule states is very inefficient and generalization to unseen states is highly unreliable whereas knowledge transfer to similar scheduling domains is difficult. In contrast, first-order relational representations enable the exploitation of the existence of domain objects and relations over these objects, and enable the use of quantification over objectives (goals), action effects and properties of states. In this work, a novel approach which formalizes the re-scheduling problem as a Relational Markov Decision Process integrating first-order (deictic)representations of (abstract) schedule states is presented. Task rescheduling is solved using a relational reinforcement learning algorithm implemented in a real-time prototype system which makes room for an interactive scheduling strategy that successfully handle different repair goals and disruption scenarios. An industrial case study vividly shows how relational abstractions provide compact repair policies with minor computational efforts.Fil: Palombarini, Jorge Andrés. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; ArgentinaFil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaIBERAMIA2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/70276Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; Task Rescheduling using Relational Reinforcement Learning; IBERAMIA; Inteligencia Artificial; 50; 12-2012; 57-681137-36011988-3064CONICET DigitalCONICETenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:41:59Zoai:ri.conicet.gov.ar:11336/70276instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:41:59.962CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Task Rescheduling using Relational Reinforcement Learning
title Task Rescheduling using Relational Reinforcement Learning
spellingShingle Task Rescheduling using Relational Reinforcement Learning
Palombarini, Jorge Andrés
RESCHEDULING
RELATIONAL REINFORCEMENT LEARNING
MANUFACTURING CONTROL
RELATIONAL ABSTRACTIONS
title_short Task Rescheduling using Relational Reinforcement Learning
title_full Task Rescheduling using Relational Reinforcement Learning
title_fullStr Task Rescheduling using Relational Reinforcement Learning
title_full_unstemmed Task Rescheduling using Relational Reinforcement Learning
title_sort Task Rescheduling using Relational Reinforcement Learning
dc.creator.none.fl_str_mv Palombarini, Jorge Andrés
Martínez, Ernesto Carlos
author Palombarini, Jorge Andrés
author_facet Palombarini, Jorge Andrés
Martínez, Ernesto Carlos
author_role author
author2 Martínez, Ernesto Carlos
author2_role author
dc.subject.none.fl_str_mv RESCHEDULING
RELATIONAL REINFORCEMENT LEARNING
MANUFACTURING CONTROL
RELATIONAL ABSTRACTIONS
topic RESCHEDULING
RELATIONAL REINFORCEMENT LEARNING
MANUFACTURING CONTROL
RELATIONAL ABSTRACTIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Generating and representing knowledge about heuristics for repair-based scheduling is a key issue in any rescheduling strategy to deal with unforeseen events and disturbances. Resorting to a feature-based propositional representation of schedule states is very inefficient and generalization to unseen states is highly unreliable whereas knowledge transfer to similar scheduling domains is difficult. In contrast, first-order relational representations enable the exploitation of the existence of domain objects and relations over these objects, and enable the use of quantification over objectives (goals), action effects and properties of states. In this work, a novel approach which formalizes the re-scheduling problem as a Relational Markov Decision Process integrating first-order (deictic)representations of (abstract) schedule states is presented. Task rescheduling is solved using a relational reinforcement learning algorithm implemented in a real-time prototype system which makes room for an interactive scheduling strategy that successfully handle different repair goals and disruption scenarios. An industrial case study vividly shows how relational abstractions provide compact repair policies with minor computational efforts.
Fil: Palombarini, Jorge Andrés. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
description Generating and representing knowledge about heuristics for repair-based scheduling is a key issue in any rescheduling strategy to deal with unforeseen events and disturbances. Resorting to a feature-based propositional representation of schedule states is very inefficient and generalization to unseen states is highly unreliable whereas knowledge transfer to similar scheduling domains is difficult. In contrast, first-order relational representations enable the exploitation of the existence of domain objects and relations over these objects, and enable the use of quantification over objectives (goals), action effects and properties of states. In this work, a novel approach which formalizes the re-scheduling problem as a Relational Markov Decision Process integrating first-order (deictic)representations of (abstract) schedule states is presented. Task rescheduling is solved using a relational reinforcement learning algorithm implemented in a real-time prototype system which makes room for an interactive scheduling strategy that successfully handle different repair goals and disruption scenarios. An industrial case study vividly shows how relational abstractions provide compact repair policies with minor computational efforts.
publishDate 2012
dc.date.none.fl_str_mv 2012-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/70276
Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; Task Rescheduling using Relational Reinforcement Learning; IBERAMIA; Inteligencia Artificial; 50; 12-2012; 57-68
1137-3601
1988-3064
CONICET Digital
CONICET
url http://hdl.handle.net/11336/70276
identifier_str_mv Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; Task Rescheduling using Relational Reinforcement Learning; IBERAMIA; Inteligencia Artificial; 50; 12-2012; 57-68
1137-3601
1988-3064
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IBERAMIA
publisher.none.fl_str_mv IBERAMIA
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613323790745600
score 13.069144