Visible/near infrared-partial least-squares analysis of Brix in sugar cane juice: A test field for variable selection methods
- Autores
- Sorol, Natalia Raquel; Arancibia, Eleuterio Luis; Bortolato, Santiago Andres; Olivieri, Alejandro Cesar
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Several variable selection algorithms were applied in order to sort informative wavelengths for building a partial least-squares (PLS) model relating visible/near infrared spectra to Brix degrees in samples of sugar cane juice. Two types of selection methods were explored. A first group was based on the PLS regression coefficients, such as the selection of coefficients significantly larger than their uncertainties, the estimation of the variable importance in projection (VIP), and uninformative variable elimination (UVE). The second group involves minimum error searches conducted through interval PLS (i-PLS), variable-size moving-window (VS-MW), genetic algorithms (GA) and particle swarm optimization (PSO). The best results were obtained using the latter two methodologies, both based on applications of natural computation. The results furnished by inspection of the spectrum of regression coefficients may be dangerous, in general, for selecting informative variables. This important fact has been confirmed by analysis of a set of simulated data mimicking the experimental sugar cane juice spectra.
Fil: Sorol, Natalia Raquel. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; Argentina
Fil: Arancibia, Eleuterio Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Química del Noroeste. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química del Noroeste; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Ingeniería en Procesos y Gestión Industrial; Argentina
Fil: Bortolato, Santiago Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina - Materia
-
Brix Degrees
Partial Least-Squares
Sugar Cane Juice Analysis
Variable Selection
Vis-Nir Spectroscopy - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/52919
Ver los metadatos del registro completo
id |
CONICETDig_3716b4821d48dad1ccf12776a0ad90ac |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/52919 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Visible/near infrared-partial least-squares analysis of Brix in sugar cane juice: A test field for variable selection methodsSorol, Natalia RaquelArancibia, Eleuterio LuisBortolato, Santiago AndresOlivieri, Alejandro CesarBrix DegreesPartial Least-SquaresSugar Cane Juice AnalysisVariable SelectionVis-Nir Spectroscopyhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Several variable selection algorithms were applied in order to sort informative wavelengths for building a partial least-squares (PLS) model relating visible/near infrared spectra to Brix degrees in samples of sugar cane juice. Two types of selection methods were explored. A first group was based on the PLS regression coefficients, such as the selection of coefficients significantly larger than their uncertainties, the estimation of the variable importance in projection (VIP), and uninformative variable elimination (UVE). The second group involves minimum error searches conducted through interval PLS (i-PLS), variable-size moving-window (VS-MW), genetic algorithms (GA) and particle swarm optimization (PSO). The best results were obtained using the latter two methodologies, both based on applications of natural computation. The results furnished by inspection of the spectrum of regression coefficients may be dangerous, in general, for selecting informative variables. This important fact has been confirmed by analysis of a set of simulated data mimicking the experimental sugar cane juice spectra.Fil: Sorol, Natalia Raquel. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Arancibia, Eleuterio Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Química del Noroeste. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química del Noroeste; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Ingeniería en Procesos y Gestión Industrial; ArgentinaFil: Bortolato, Santiago Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaElsevier Science2010-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/52919Sorol, Natalia Raquel; Arancibia, Eleuterio Luis; Bortolato, Santiago Andres; Olivieri, Alejandro Cesar; Visible/near infrared-partial least-squares analysis of Brix in sugar cane juice: A test field for variable selection methods; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 102; 2; 7-2010; 100-1090169-7439CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2010.04.009info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169743910000584info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:51:09Zoai:ri.conicet.gov.ar:11336/52919instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:51:09.608CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Visible/near infrared-partial least-squares analysis of Brix in sugar cane juice: A test field for variable selection methods |
title |
Visible/near infrared-partial least-squares analysis of Brix in sugar cane juice: A test field for variable selection methods |
spellingShingle |
Visible/near infrared-partial least-squares analysis of Brix in sugar cane juice: A test field for variable selection methods Sorol, Natalia Raquel Brix Degrees Partial Least-Squares Sugar Cane Juice Analysis Variable Selection Vis-Nir Spectroscopy |
title_short |
Visible/near infrared-partial least-squares analysis of Brix in sugar cane juice: A test field for variable selection methods |
title_full |
Visible/near infrared-partial least-squares analysis of Brix in sugar cane juice: A test field for variable selection methods |
title_fullStr |
Visible/near infrared-partial least-squares analysis of Brix in sugar cane juice: A test field for variable selection methods |
title_full_unstemmed |
Visible/near infrared-partial least-squares analysis of Brix in sugar cane juice: A test field for variable selection methods |
title_sort |
Visible/near infrared-partial least-squares analysis of Brix in sugar cane juice: A test field for variable selection methods |
dc.creator.none.fl_str_mv |
Sorol, Natalia Raquel Arancibia, Eleuterio Luis Bortolato, Santiago Andres Olivieri, Alejandro Cesar |
author |
Sorol, Natalia Raquel |
author_facet |
Sorol, Natalia Raquel Arancibia, Eleuterio Luis Bortolato, Santiago Andres Olivieri, Alejandro Cesar |
author_role |
author |
author2 |
Arancibia, Eleuterio Luis Bortolato, Santiago Andres Olivieri, Alejandro Cesar |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Brix Degrees Partial Least-Squares Sugar Cane Juice Analysis Variable Selection Vis-Nir Spectroscopy |
topic |
Brix Degrees Partial Least-Squares Sugar Cane Juice Analysis Variable Selection Vis-Nir Spectroscopy |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Several variable selection algorithms were applied in order to sort informative wavelengths for building a partial least-squares (PLS) model relating visible/near infrared spectra to Brix degrees in samples of sugar cane juice. Two types of selection methods were explored. A first group was based on the PLS regression coefficients, such as the selection of coefficients significantly larger than their uncertainties, the estimation of the variable importance in projection (VIP), and uninformative variable elimination (UVE). The second group involves minimum error searches conducted through interval PLS (i-PLS), variable-size moving-window (VS-MW), genetic algorithms (GA) and particle swarm optimization (PSO). The best results were obtained using the latter two methodologies, both based on applications of natural computation. The results furnished by inspection of the spectrum of regression coefficients may be dangerous, in general, for selecting informative variables. This important fact has been confirmed by analysis of a set of simulated data mimicking the experimental sugar cane juice spectra. Fil: Sorol, Natalia Raquel. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; Argentina Fil: Arancibia, Eleuterio Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Química del Noroeste. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química del Noroeste; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Ingeniería en Procesos y Gestión Industrial; Argentina Fil: Bortolato, Santiago Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina |
description |
Several variable selection algorithms were applied in order to sort informative wavelengths for building a partial least-squares (PLS) model relating visible/near infrared spectra to Brix degrees in samples of sugar cane juice. Two types of selection methods were explored. A first group was based on the PLS regression coefficients, such as the selection of coefficients significantly larger than their uncertainties, the estimation of the variable importance in projection (VIP), and uninformative variable elimination (UVE). The second group involves minimum error searches conducted through interval PLS (i-PLS), variable-size moving-window (VS-MW), genetic algorithms (GA) and particle swarm optimization (PSO). The best results were obtained using the latter two methodologies, both based on applications of natural computation. The results furnished by inspection of the spectrum of regression coefficients may be dangerous, in general, for selecting informative variables. This important fact has been confirmed by analysis of a set of simulated data mimicking the experimental sugar cane juice spectra. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/52919 Sorol, Natalia Raquel; Arancibia, Eleuterio Luis; Bortolato, Santiago Andres; Olivieri, Alejandro Cesar; Visible/near infrared-partial least-squares analysis of Brix in sugar cane juice: A test field for variable selection methods; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 102; 2; 7-2010; 100-109 0169-7439 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/52919 |
identifier_str_mv |
Sorol, Natalia Raquel; Arancibia, Eleuterio Luis; Bortolato, Santiago Andres; Olivieri, Alejandro Cesar; Visible/near infrared-partial least-squares analysis of Brix in sugar cane juice: A test field for variable selection methods; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 102; 2; 7-2010; 100-109 0169-7439 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2010.04.009 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0169743910000584 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083037421371392 |
score |
13.22299 |