High-performance liquid chromatography of chalcones: Quantitative structure-retention relationships using partial least-squares (PLS) modeling

Autores
Montaña, Maria Paulina; Pappano, Nora Beatriz; Debattista, Nora Beatriz; Raba, Julio; Luco, Juan Maria
Año de publicación
2000
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this study, the multivariate partial least squares projections to latent structures (PLS) technique was used for modeling the RP-HPLC retention data of 17 chalcones, which were determined with methanol-water mobile phases of different compositions. The PLS model was based on molecular descriptors which can be calculated for any compound utilizing only the knowledge of its molecular structure. The PLS analysis resulted in a model with the following statistics: r = 0.976, Q = 0.933, s = 0.076, and F = 43.63. The adequacy of the developed model was assessed by means of cross-validation and also, by PLS modeling of the retention data of several chalcones reported by Walczak et al. [J. Chromatogr. 353, 123, (1986)], which were obtained using stationary phases of different polarity (-NH2, DIOL, -CN, ODS, C8). The structural interpretation of the developed PLS model was accomplished by means of comparative correlations between the nonempirical descriptors used in the model and the solvation parameters developed by Abraham. The results obtained in this work provides evidence for the great potential of the topological approach for the development of quantitative structure-retention relationship (QSRR) models.
Fil: Montaña, Maria Paulina. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Departamento de Química. Área de Química Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina
Fil: Pappano, Nora Beatriz. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Departamento de Química. Área de Química Física; Argentina
Fil: Debattista, Nora Beatriz. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Departamento de Química. Área de Química Física; Argentina
Fil: Raba, Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Departamento de Química. Área de Química Física; Argentina
Fil: Luco, Juan Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Laboratorio de Alimentos; Argentina
Materia
COLUMN LIQUID CHROMATOGRAPHY
PARTIAL LEAST SQUARES (PLS) PROJECTIONS
CHALCONES
TOPOLOGICAL DESCRIPTORS
QSRR
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/101186

id CONICETDig_dc85b003c855426042758d5278664f1d
oai_identifier_str oai:ri.conicet.gov.ar:11336/101186
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling High-performance liquid chromatography of chalcones: Quantitative structure-retention relationships using partial least-squares (PLS) modelingMontaña, Maria PaulinaPappano, Nora BeatrizDebattista, Nora BeatrizRaba, JulioLuco, Juan MariaCOLUMN LIQUID CHROMATOGRAPHYPARTIAL LEAST SQUARES (PLS) PROJECTIONSCHALCONESTOPOLOGICAL DESCRIPTORSQSRRhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1In this study, the multivariate partial least squares projections to latent structures (PLS) technique was used for modeling the RP-HPLC retention data of 17 chalcones, which were determined with methanol-water mobile phases of different compositions. The PLS model was based on molecular descriptors which can be calculated for any compound utilizing only the knowledge of its molecular structure. The PLS analysis resulted in a model with the following statistics: r = 0.976, Q = 0.933, s = 0.076, and F = 43.63. The adequacy of the developed model was assessed by means of cross-validation and also, by PLS modeling of the retention data of several chalcones reported by Walczak et al. [J. Chromatogr. 353, 123, (1986)], which were obtained using stationary phases of different polarity (-NH2, DIOL, -CN, ODS, C8). The structural interpretation of the developed PLS model was accomplished by means of comparative correlations between the nonempirical descriptors used in the model and the solvation parameters developed by Abraham. The results obtained in this work provides evidence for the great potential of the topological approach for the development of quantitative structure-retention relationship (QSRR) models.Fil: Montaña, Maria Paulina. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Departamento de Química. Área de Química Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; ArgentinaFil: Pappano, Nora Beatriz. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Departamento de Química. Área de Química Física; ArgentinaFil: Debattista, Nora Beatriz. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Departamento de Química. Área de Química Física; ArgentinaFil: Raba, Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Departamento de Química. Área de Química Física; ArgentinaFil: Luco, Juan Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Laboratorio de Alimentos; ArgentinaVieweg2000-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/101186Montaña, Maria Paulina; Pappano, Nora Beatriz; Debattista, Nora Beatriz; Raba, Julio; Luco, Juan Maria; High-performance liquid chromatography of chalcones: Quantitative structure-retention relationships using partial least-squares (PLS) modeling; Vieweg; Chromatographia; 51; 11-12; 6-2000; 727-7350009-58931612-1112CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FBF02505412info:eu-repo/semantics/altIdentifier/doi/10.1007/BF02505412info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:00:19Zoai:ri.conicet.gov.ar:11336/101186instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:00:19.545CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv High-performance liquid chromatography of chalcones: Quantitative structure-retention relationships using partial least-squares (PLS) modeling
title High-performance liquid chromatography of chalcones: Quantitative structure-retention relationships using partial least-squares (PLS) modeling
spellingShingle High-performance liquid chromatography of chalcones: Quantitative structure-retention relationships using partial least-squares (PLS) modeling
Montaña, Maria Paulina
COLUMN LIQUID CHROMATOGRAPHY
PARTIAL LEAST SQUARES (PLS) PROJECTIONS
CHALCONES
TOPOLOGICAL DESCRIPTORS
QSRR
title_short High-performance liquid chromatography of chalcones: Quantitative structure-retention relationships using partial least-squares (PLS) modeling
title_full High-performance liquid chromatography of chalcones: Quantitative structure-retention relationships using partial least-squares (PLS) modeling
title_fullStr High-performance liquid chromatography of chalcones: Quantitative structure-retention relationships using partial least-squares (PLS) modeling
title_full_unstemmed High-performance liquid chromatography of chalcones: Quantitative structure-retention relationships using partial least-squares (PLS) modeling
title_sort High-performance liquid chromatography of chalcones: Quantitative structure-retention relationships using partial least-squares (PLS) modeling
dc.creator.none.fl_str_mv Montaña, Maria Paulina
Pappano, Nora Beatriz
Debattista, Nora Beatriz
Raba, Julio
Luco, Juan Maria
author Montaña, Maria Paulina
author_facet Montaña, Maria Paulina
Pappano, Nora Beatriz
Debattista, Nora Beatriz
Raba, Julio
Luco, Juan Maria
author_role author
author2 Pappano, Nora Beatriz
Debattista, Nora Beatriz
Raba, Julio
Luco, Juan Maria
author2_role author
author
author
author
dc.subject.none.fl_str_mv COLUMN LIQUID CHROMATOGRAPHY
PARTIAL LEAST SQUARES (PLS) PROJECTIONS
CHALCONES
TOPOLOGICAL DESCRIPTORS
QSRR
topic COLUMN LIQUID CHROMATOGRAPHY
PARTIAL LEAST SQUARES (PLS) PROJECTIONS
CHALCONES
TOPOLOGICAL DESCRIPTORS
QSRR
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this study, the multivariate partial least squares projections to latent structures (PLS) technique was used for modeling the RP-HPLC retention data of 17 chalcones, which were determined with methanol-water mobile phases of different compositions. The PLS model was based on molecular descriptors which can be calculated for any compound utilizing only the knowledge of its molecular structure. The PLS analysis resulted in a model with the following statistics: r = 0.976, Q = 0.933, s = 0.076, and F = 43.63. The adequacy of the developed model was assessed by means of cross-validation and also, by PLS modeling of the retention data of several chalcones reported by Walczak et al. [J. Chromatogr. 353, 123, (1986)], which were obtained using stationary phases of different polarity (-NH2, DIOL, -CN, ODS, C8). The structural interpretation of the developed PLS model was accomplished by means of comparative correlations between the nonempirical descriptors used in the model and the solvation parameters developed by Abraham. The results obtained in this work provides evidence for the great potential of the topological approach for the development of quantitative structure-retention relationship (QSRR) models.
Fil: Montaña, Maria Paulina. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Departamento de Química. Área de Química Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina
Fil: Pappano, Nora Beatriz. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Departamento de Química. Área de Química Física; Argentina
Fil: Debattista, Nora Beatriz. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Departamento de Química. Área de Química Física; Argentina
Fil: Raba, Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Departamento de Química. Área de Química Física; Argentina
Fil: Luco, Juan Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Química de San Luis. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Química de San Luis; Argentina. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Laboratorio de Alimentos; Argentina
description In this study, the multivariate partial least squares projections to latent structures (PLS) technique was used for modeling the RP-HPLC retention data of 17 chalcones, which were determined with methanol-water mobile phases of different compositions. The PLS model was based on molecular descriptors which can be calculated for any compound utilizing only the knowledge of its molecular structure. The PLS analysis resulted in a model with the following statistics: r = 0.976, Q = 0.933, s = 0.076, and F = 43.63. The adequacy of the developed model was assessed by means of cross-validation and also, by PLS modeling of the retention data of several chalcones reported by Walczak et al. [J. Chromatogr. 353, 123, (1986)], which were obtained using stationary phases of different polarity (-NH2, DIOL, -CN, ODS, C8). The structural interpretation of the developed PLS model was accomplished by means of comparative correlations between the nonempirical descriptors used in the model and the solvation parameters developed by Abraham. The results obtained in this work provides evidence for the great potential of the topological approach for the development of quantitative structure-retention relationship (QSRR) models.
publishDate 2000
dc.date.none.fl_str_mv 2000-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/101186
Montaña, Maria Paulina; Pappano, Nora Beatriz; Debattista, Nora Beatriz; Raba, Julio; Luco, Juan Maria; High-performance liquid chromatography of chalcones: Quantitative structure-retention relationships using partial least-squares (PLS) modeling; Vieweg; Chromatographia; 51; 11-12; 6-2000; 727-735
0009-5893
1612-1112
CONICET Digital
CONICET
url http://hdl.handle.net/11336/101186
identifier_str_mv Montaña, Maria Paulina; Pappano, Nora Beatriz; Debattista, Nora Beatriz; Raba, Julio; Luco, Juan Maria; High-performance liquid chromatography of chalcones: Quantitative structure-retention relationships using partial least-squares (PLS) modeling; Vieweg; Chromatographia; 51; 11-12; 6-2000; 727-735
0009-5893
1612-1112
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2FBF02505412
info:eu-repo/semantics/altIdentifier/doi/10.1007/BF02505412
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Vieweg
publisher.none.fl_str_mv Vieweg
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269631913394176
score 13.13397