Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections a...
- Autores
- de Almeida, Valber Elias; de Araújo Gomes, Adriano; de Sousa Fernandes, David Douglas; Goicoechea, Hector Casimiro; Galvão, Roberto Kawakami Harrop; Araújo, Mario Cesar Ugulino
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper proposes a new variable selection method for nonlinear multivariate calibration, combining the Successive Projections Algorithm for interval selection (iSPA) with the Kernel Partial Least Squares (Kernel-PLS) modelling technique. The proposed iSPA-Kernel-PLS algorithm is employed in a case study involving a Vis-NIR spectrometric dataset with complex nonlinear features. The analytical problem consists of determining Brix and sucrose content in samples from a sugar production system, on the basis of transflectance spectra. As compared to full-spectrum Kernel-PLS, the iSPA-Kernel-PLS models involve a smaller number of variables and display statistically significant superiority in terms of accuracy and/or bias in the predictions.
Fil: de Almeida, Valber Elias. Universidade Federal da Paraíba; Brasil
Fil: de Araújo Gomes, Adriano. Universidade Federal do Sul e Sudoeste do Pará; Brasil
Fil: de Sousa Fernandes, David Douglas. Universidade Federal da Paraíba; Brasil
Fil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina
Fil: Galvão, Roberto Kawakami Harrop. Instituto Tecnológico de Aeronáutica; Brasil
Fil: Araújo, Mario Cesar Ugulino. Universidade Federal da Paraíba; Brasil - Materia
-
Kernel Partial Least Squares
Near Infrared Spectrometry
Nonlinear Multivariate Calibration
Successive Projections Algorithm
Sugar
Variable Selection - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/58681
Ver los metadatos del registro completo
id |
CONICETDig_ea3aa7e2691f296aa6bdab7899bf5787 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/58681 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithmde Almeida, Valber Eliasde Araújo Gomes, Adrianode Sousa Fernandes, David DouglasGoicoechea, Hector CasimiroGalvão, Roberto Kawakami HarropAraújo, Mario Cesar UgulinoKernel Partial Least SquaresNear Infrared SpectrometryNonlinear Multivariate CalibrationSuccessive Projections AlgorithmSugarVariable Selectionhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1This paper proposes a new variable selection method for nonlinear multivariate calibration, combining the Successive Projections Algorithm for interval selection (iSPA) with the Kernel Partial Least Squares (Kernel-PLS) modelling technique. The proposed iSPA-Kernel-PLS algorithm is employed in a case study involving a Vis-NIR spectrometric dataset with complex nonlinear features. The analytical problem consists of determining Brix and sucrose content in samples from a sugar production system, on the basis of transflectance spectra. As compared to full-spectrum Kernel-PLS, the iSPA-Kernel-PLS models involve a smaller number of variables and display statistically significant superiority in terms of accuracy and/or bias in the predictions.Fil: de Almeida, Valber Elias. Universidade Federal da Paraíba; BrasilFil: de Araújo Gomes, Adriano. Universidade Federal do Sul e Sudoeste do Pará; BrasilFil: de Sousa Fernandes, David Douglas. Universidade Federal da Paraíba; BrasilFil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; ArgentinaFil: Galvão, Roberto Kawakami Harrop. Instituto Tecnológico de Aeronáutica; BrasilFil: Araújo, Mario Cesar Ugulino. Universidade Federal da Paraíba; BrasilElsevier Science2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58681de Almeida, Valber Elias; de Araújo Gomes, Adriano; de Sousa Fernandes, David Douglas; Goicoechea, Hector Casimiro; Galvão, Roberto Kawakami Harrop; et al.; Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm; Elsevier Science; Talanta; 181; 5-2018; 38-430039-9140CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.talanta.2017.12.064info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0039914017312699info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:27Zoai:ri.conicet.gov.ar:11336/58681instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:27.889CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm |
title |
Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm |
spellingShingle |
Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm de Almeida, Valber Elias Kernel Partial Least Squares Near Infrared Spectrometry Nonlinear Multivariate Calibration Successive Projections Algorithm Sugar Variable Selection |
title_short |
Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm |
title_full |
Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm |
title_fullStr |
Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm |
title_full_unstemmed |
Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm |
title_sort |
Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm |
dc.creator.none.fl_str_mv |
de Almeida, Valber Elias de Araújo Gomes, Adriano de Sousa Fernandes, David Douglas Goicoechea, Hector Casimiro Galvão, Roberto Kawakami Harrop Araújo, Mario Cesar Ugulino |
author |
de Almeida, Valber Elias |
author_facet |
de Almeida, Valber Elias de Araújo Gomes, Adriano de Sousa Fernandes, David Douglas Goicoechea, Hector Casimiro Galvão, Roberto Kawakami Harrop Araújo, Mario Cesar Ugulino |
author_role |
author |
author2 |
de Araújo Gomes, Adriano de Sousa Fernandes, David Douglas Goicoechea, Hector Casimiro Galvão, Roberto Kawakami Harrop Araújo, Mario Cesar Ugulino |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Kernel Partial Least Squares Near Infrared Spectrometry Nonlinear Multivariate Calibration Successive Projections Algorithm Sugar Variable Selection |
topic |
Kernel Partial Least Squares Near Infrared Spectrometry Nonlinear Multivariate Calibration Successive Projections Algorithm Sugar Variable Selection |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper proposes a new variable selection method for nonlinear multivariate calibration, combining the Successive Projections Algorithm for interval selection (iSPA) with the Kernel Partial Least Squares (Kernel-PLS) modelling technique. The proposed iSPA-Kernel-PLS algorithm is employed in a case study involving a Vis-NIR spectrometric dataset with complex nonlinear features. The analytical problem consists of determining Brix and sucrose content in samples from a sugar production system, on the basis of transflectance spectra. As compared to full-spectrum Kernel-PLS, the iSPA-Kernel-PLS models involve a smaller number of variables and display statistically significant superiority in terms of accuracy and/or bias in the predictions. Fil: de Almeida, Valber Elias. Universidade Federal da Paraíba; Brasil Fil: de Araújo Gomes, Adriano. Universidade Federal do Sul e Sudoeste do Pará; Brasil Fil: de Sousa Fernandes, David Douglas. Universidade Federal da Paraíba; Brasil Fil: Goicoechea, Hector Casimiro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina Fil: Galvão, Roberto Kawakami Harrop. Instituto Tecnológico de Aeronáutica; Brasil Fil: Araújo, Mario Cesar Ugulino. Universidade Federal da Paraíba; Brasil |
description |
This paper proposes a new variable selection method for nonlinear multivariate calibration, combining the Successive Projections Algorithm for interval selection (iSPA) with the Kernel Partial Least Squares (Kernel-PLS) modelling technique. The proposed iSPA-Kernel-PLS algorithm is employed in a case study involving a Vis-NIR spectrometric dataset with complex nonlinear features. The analytical problem consists of determining Brix and sucrose content in samples from a sugar production system, on the basis of transflectance spectra. As compared to full-spectrum Kernel-PLS, the iSPA-Kernel-PLS models involve a smaller number of variables and display statistically significant superiority in terms of accuracy and/or bias in the predictions. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/58681 de Almeida, Valber Elias; de Araújo Gomes, Adriano; de Sousa Fernandes, David Douglas; Goicoechea, Hector Casimiro; Galvão, Roberto Kawakami Harrop; et al.; Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm; Elsevier Science; Talanta; 181; 5-2018; 38-43 0039-9140 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/58681 |
identifier_str_mv |
de Almeida, Valber Elias; de Araújo Gomes, Adriano; de Sousa Fernandes, David Douglas; Goicoechea, Hector Casimiro; Galvão, Roberto Kawakami Harrop; et al.; Vis-NIR spectrometric determination of Brix and sucrose in sugar production samples using kernel partial least squares with interval selection based on the successive projections algorithm; Elsevier Science; Talanta; 181; 5-2018; 38-43 0039-9140 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.talanta.2017.12.064 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0039914017312699 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268603227832320 |
score |
13.13397 |