Analytical Figures of Merit for Partial Least-Squares Coupled to Residual Multilinearization
- Autores
- Allegrini, Franco; Olivieri, Alejandro Cesar
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A new expression is developed which allows estimating the sensitivity for the whole family of multivariate calibration algorithms based on partial least-squares regression combined with residual multilinearization. The sensitivity can be employed to compute other relevant figures of merit such as analytical sensitivity, limit of detection, limit of quantitation, and uncertainty in predicted concentration. The results are substantiated by extensive Monte Carlo noise addition simulations for a variety of systems with a different number of analytes and interfering agents, different degrees of overlapping in component profiles, and different numbers of instrumental data modes per sample, all requiring the achievement of the second-order advantage. The connection between the present approach and the intuitive concept of net analyte signal is discussed. An experimental example for which second-, third-, and fourth-order data are available is also studied, concerning the improvement in figures of merit on increasing the data order, which is consistent with the decrease in average prediction error.
Fil: Allegrini, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina - Materia
-
Figures of Merit
Sensitivity
Partial Least Squares
Multi-way calibration - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/106476
Ver los metadatos del registro completo
id |
CONICETDig_6fb6d66889da05161e7bc6a4525c23c3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/106476 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Analytical Figures of Merit for Partial Least-Squares Coupled to Residual MultilinearizationAllegrini, FrancoOlivieri, Alejandro CesarFigures of MeritSensitivityPartial Least SquaresMulti-way calibrationhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1A new expression is developed which allows estimating the sensitivity for the whole family of multivariate calibration algorithms based on partial least-squares regression combined with residual multilinearization. The sensitivity can be employed to compute other relevant figures of merit such as analytical sensitivity, limit of detection, limit of quantitation, and uncertainty in predicted concentration. The results are substantiated by extensive Monte Carlo noise addition simulations for a variety of systems with a different number of analytes and interfering agents, different degrees of overlapping in component profiles, and different numbers of instrumental data modes per sample, all requiring the achievement of the second-order advantage. The connection between the present approach and the intuitive concept of net analyte signal is discussed. An experimental example for which second-, third-, and fourth-order data are available is also studied, concerning the improvement in figures of merit on increasing the data order, which is consistent with the decrease in average prediction error.Fil: Allegrini, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaFil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaAmerican Chemical Society2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/106476Allegrini, Franco; Olivieri, Alejandro Cesar; Analytical Figures of Merit for Partial Least-Squares Coupled to Residual Multilinearization; American Chemical Society; Analytical Chemistry; 84; 24; 12-2012; 10823-108300003-2700CONICET DigitalCONICETenginfo:eu-repo/semantics/reference/url/https://pubs.acs.org/doi/suppl/10.1021/ac302996d/suppl_file/ac302996d_si_001.pdfinfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/ac302996dinfo:eu-repo/semantics/altIdentifier/doi/10.1021/ac302996dinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:27:34Zoai:ri.conicet.gov.ar:11336/106476instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:27:34.32CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Analytical Figures of Merit for Partial Least-Squares Coupled to Residual Multilinearization |
title |
Analytical Figures of Merit for Partial Least-Squares Coupled to Residual Multilinearization |
spellingShingle |
Analytical Figures of Merit for Partial Least-Squares Coupled to Residual Multilinearization Allegrini, Franco Figures of Merit Sensitivity Partial Least Squares Multi-way calibration |
title_short |
Analytical Figures of Merit for Partial Least-Squares Coupled to Residual Multilinearization |
title_full |
Analytical Figures of Merit for Partial Least-Squares Coupled to Residual Multilinearization |
title_fullStr |
Analytical Figures of Merit for Partial Least-Squares Coupled to Residual Multilinearization |
title_full_unstemmed |
Analytical Figures of Merit for Partial Least-Squares Coupled to Residual Multilinearization |
title_sort |
Analytical Figures of Merit for Partial Least-Squares Coupled to Residual Multilinearization |
dc.creator.none.fl_str_mv |
Allegrini, Franco Olivieri, Alejandro Cesar |
author |
Allegrini, Franco |
author_facet |
Allegrini, Franco Olivieri, Alejandro Cesar |
author_role |
author |
author2 |
Olivieri, Alejandro Cesar |
author2_role |
author |
dc.subject.none.fl_str_mv |
Figures of Merit Sensitivity Partial Least Squares Multi-way calibration |
topic |
Figures of Merit Sensitivity Partial Least Squares Multi-way calibration |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A new expression is developed which allows estimating the sensitivity for the whole family of multivariate calibration algorithms based on partial least-squares regression combined with residual multilinearization. The sensitivity can be employed to compute other relevant figures of merit such as analytical sensitivity, limit of detection, limit of quantitation, and uncertainty in predicted concentration. The results are substantiated by extensive Monte Carlo noise addition simulations for a variety of systems with a different number of analytes and interfering agents, different degrees of overlapping in component profiles, and different numbers of instrumental data modes per sample, all requiring the achievement of the second-order advantage. The connection between the present approach and the intuitive concept of net analyte signal is discussed. An experimental example for which second-, third-, and fourth-order data are available is also studied, concerning the improvement in figures of merit on increasing the data order, which is consistent with the decrease in average prediction error. Fil: Allegrini, Franco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina Fil: Olivieri, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina |
description |
A new expression is developed which allows estimating the sensitivity for the whole family of multivariate calibration algorithms based on partial least-squares regression combined with residual multilinearization. The sensitivity can be employed to compute other relevant figures of merit such as analytical sensitivity, limit of detection, limit of quantitation, and uncertainty in predicted concentration. The results are substantiated by extensive Monte Carlo noise addition simulations for a variety of systems with a different number of analytes and interfering agents, different degrees of overlapping in component profiles, and different numbers of instrumental data modes per sample, all requiring the achievement of the second-order advantage. The connection between the present approach and the intuitive concept of net analyte signal is discussed. An experimental example for which second-, third-, and fourth-order data are available is also studied, concerning the improvement in figures of merit on increasing the data order, which is consistent with the decrease in average prediction error. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/106476 Allegrini, Franco; Olivieri, Alejandro Cesar; Analytical Figures of Merit for Partial Least-Squares Coupled to Residual Multilinearization; American Chemical Society; Analytical Chemistry; 84; 24; 12-2012; 10823-10830 0003-2700 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/106476 |
identifier_str_mv |
Allegrini, Franco; Olivieri, Alejandro Cesar; Analytical Figures of Merit for Partial Least-Squares Coupled to Residual Multilinearization; American Chemical Society; Analytical Chemistry; 84; 24; 12-2012; 10823-10830 0003-2700 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/reference/url/https://pubs.acs.org/doi/suppl/10.1021/ac302996d/suppl_file/ac302996d_si_001.pdf info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/ac302996d info:eu-repo/semantics/altIdentifier/doi/10.1021/ac302996d |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082732321406976 |
score |
13.22299 |