Algebraic bivariant K-theory and Leavitt path algebras
- Autores
- Cortiñas, Guillermo Horacio; Montero, Diego
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We investigate to what extent homotopy invariant, excisive and matrix stable homology theories help one distinguish between the Leavitt path algebras L.E/ and L.F / of graphs E and F over a commutative ground ring `. We approach this by studying the structure of such algebras under bivariant algebraic K-theory kk, which is the universal homology theory with the properties above. We show that under very mild assumptions on `, for a graph E with finitely many vertices and reduced incidence matrix AE, the structure of L.E/ in kk depends only on the groups Coker.I AE/ and Coker.I A t E/. We also prove that for Leavitt path algebras, kk has several properties similar to those that Kasparov’s bivariant K-theory has for C -graph algebras, including analogues of the Universal coefficient and Künneth theorems of Rosenberg and Schochet
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Montero, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
Leavitt path algebras
Classification
Algebraic bivariant K-theory
Universal coefficient theorem - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/161955
Ver los metadatos del registro completo
id |
CONICETDig_3635dabeb8dc8131b69657cdb282a947 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/161955 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Algebraic bivariant K-theory and Leavitt path algebrasCortiñas, Guillermo HoracioMontero, DiegoLeavitt path algebrasClassificationAlgebraic bivariant K-theoryUniversal coefficient theoremhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We investigate to what extent homotopy invariant, excisive and matrix stable homology theories help one distinguish between the Leavitt path algebras L.E/ and L.F / of graphs E and F over a commutative ground ring `. We approach this by studying the structure of such algebras under bivariant algebraic K-theory kk, which is the universal homology theory with the properties above. We show that under very mild assumptions on `, for a graph E with finitely many vertices and reduced incidence matrix AE, the structure of L.E/ in kk depends only on the groups Coker.I AE/ and Coker.I A t E/. We also prove that for Leavitt path algebras, kk has several properties similar to those that Kasparov’s bivariant K-theory has for C -graph algebras, including analogues of the Universal coefficient and Künneth theorems of Rosenberg and SchochetFil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Montero, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaEuropean Mathematical Society2021-02-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/161955Cortiñas, Guillermo Horacio; Montero, Diego; Algebraic bivariant K-theory and Leavitt path algebras; European Mathematical Society; Journal of Noncommutative Geometry; 25; 1; 2-2-2021; 113-1461661-69521661-6960CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4171/jncg/397info:eu-repo/semantics/altIdentifier/url/https://ems.press/journals/jncg/articles/17454info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:25:11Zoai:ri.conicet.gov.ar:11336/161955instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:25:11.366CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Algebraic bivariant K-theory and Leavitt path algebras |
title |
Algebraic bivariant K-theory and Leavitt path algebras |
spellingShingle |
Algebraic bivariant K-theory and Leavitt path algebras Cortiñas, Guillermo Horacio Leavitt path algebras Classification Algebraic bivariant K-theory Universal coefficient theorem |
title_short |
Algebraic bivariant K-theory and Leavitt path algebras |
title_full |
Algebraic bivariant K-theory and Leavitt path algebras |
title_fullStr |
Algebraic bivariant K-theory and Leavitt path algebras |
title_full_unstemmed |
Algebraic bivariant K-theory and Leavitt path algebras |
title_sort |
Algebraic bivariant K-theory and Leavitt path algebras |
dc.creator.none.fl_str_mv |
Cortiñas, Guillermo Horacio Montero, Diego |
author |
Cortiñas, Guillermo Horacio |
author_facet |
Cortiñas, Guillermo Horacio Montero, Diego |
author_role |
author |
author2 |
Montero, Diego |
author2_role |
author |
dc.subject.none.fl_str_mv |
Leavitt path algebras Classification Algebraic bivariant K-theory Universal coefficient theorem |
topic |
Leavitt path algebras Classification Algebraic bivariant K-theory Universal coefficient theorem |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We investigate to what extent homotopy invariant, excisive and matrix stable homology theories help one distinguish between the Leavitt path algebras L.E/ and L.F / of graphs E and F over a commutative ground ring `. We approach this by studying the structure of such algebras under bivariant algebraic K-theory kk, which is the universal homology theory with the properties above. We show that under very mild assumptions on `, for a graph E with finitely many vertices and reduced incidence matrix AE, the structure of L.E/ in kk depends only on the groups Coker.I AE/ and Coker.I A t E/. We also prove that for Leavitt path algebras, kk has several properties similar to those that Kasparov’s bivariant K-theory has for C -graph algebras, including analogues of the Universal coefficient and Künneth theorems of Rosenberg and Schochet Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Montero, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
We investigate to what extent homotopy invariant, excisive and matrix stable homology theories help one distinguish between the Leavitt path algebras L.E/ and L.F / of graphs E and F over a commutative ground ring `. We approach this by studying the structure of such algebras under bivariant algebraic K-theory kk, which is the universal homology theory with the properties above. We show that under very mild assumptions on `, for a graph E with finitely many vertices and reduced incidence matrix AE, the structure of L.E/ in kk depends only on the groups Coker.I AE/ and Coker.I A t E/. We also prove that for Leavitt path algebras, kk has several properties similar to those that Kasparov’s bivariant K-theory has for C -graph algebras, including analogues of the Universal coefficient and Künneth theorems of Rosenberg and Schochet |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/161955 Cortiñas, Guillermo Horacio; Montero, Diego; Algebraic bivariant K-theory and Leavitt path algebras; European Mathematical Society; Journal of Noncommutative Geometry; 25; 1; 2-2-2021; 113-146 1661-6952 1661-6960 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/161955 |
identifier_str_mv |
Cortiñas, Guillermo Horacio; Montero, Diego; Algebraic bivariant K-theory and Leavitt path algebras; European Mathematical Society; Journal of Noncommutative Geometry; 25; 1; 2-2-2021; 113-146 1661-6952 1661-6960 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4171/jncg/397 info:eu-repo/semantics/altIdentifier/url/https://ems.press/journals/jncg/articles/17454 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
European Mathematical Society |
publisher.none.fl_str_mv |
European Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082682912505856 |
score |
13.22299 |