Tensor products of Leavitt path algebras
- Autores
- Ara, Pere; Cortiñas, Guillermo Horacio
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We compute the Hochschild homology of Leavitt path algebras over a field k. As an application, we show that L2 and L2 ⊗ L2 have different Hochschild homologies, and so they are not Morita equivalent; in particular, they are not isomorphic. Similarly, L∞ and L∞ ⊗ L∞ are distinguished by their Hochschild homologies, and so they are not Morita equivalent either. By contrast, we show that K-theory cannot distinguish these algebras; we have K∗(L2) = K∗(L2 ⊗ L2) = 0 and K∗(L∞) = K∗(L∞ ⊗ L∞) = K∗(k).
Fil: Ara, Pere. Universidad de Barcelona; España
Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; Argentina - Materia
-
Leavitt Path Algebras
Cuntz-Krieger Algebras
Hochschild Homology
K-Theory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14840
Ver los metadatos del registro completo
id |
CONICETDig_816ada55a4cb6cf248bbaa84d2c23ac7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14840 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Tensor products of Leavitt path algebrasAra, PereCortiñas, Guillermo HoracioLeavitt Path AlgebrasCuntz-Krieger AlgebrasHochschild HomologyK-Theoryhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We compute the Hochschild homology of Leavitt path algebras over a field k. As an application, we show that L2 and L2 ⊗ L2 have different Hochschild homologies, and so they are not Morita equivalent; in particular, they are not isomorphic. Similarly, L∞ and L∞ ⊗ L∞ are distinguished by their Hochschild homologies, and so they are not Morita equivalent either. By contrast, we show that K-theory cannot distinguish these algebras; we have K∗(L2) = K∗(L2 ⊗ L2) = 0 and K∗(L∞) = K∗(L∞ ⊗ L∞) = K∗(k).Fil: Ara, Pere. Universidad de Barcelona; EspañaFil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; ArgentinaAmerican Mathematical Society2013-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14840Ara, Pere; Cortiñas, Guillermo Horacio; Tensor products of Leavitt path algebras; American Mathematical Society; Proceedings of the American Mathematical Society; 141; 8; 4-2013; 2629-26390002-9939enginfo:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1090/S0002-9939-2013-11561-3info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2013-141-08/S0002-9939-2013-11561-3/home.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:21Zoai:ri.conicet.gov.ar:11336/14840instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:21.381CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Tensor products of Leavitt path algebras |
title |
Tensor products of Leavitt path algebras |
spellingShingle |
Tensor products of Leavitt path algebras Ara, Pere Leavitt Path Algebras Cuntz-Krieger Algebras Hochschild Homology K-Theory |
title_short |
Tensor products of Leavitt path algebras |
title_full |
Tensor products of Leavitt path algebras |
title_fullStr |
Tensor products of Leavitt path algebras |
title_full_unstemmed |
Tensor products of Leavitt path algebras |
title_sort |
Tensor products of Leavitt path algebras |
dc.creator.none.fl_str_mv |
Ara, Pere Cortiñas, Guillermo Horacio |
author |
Ara, Pere |
author_facet |
Ara, Pere Cortiñas, Guillermo Horacio |
author_role |
author |
author2 |
Cortiñas, Guillermo Horacio |
author2_role |
author |
dc.subject.none.fl_str_mv |
Leavitt Path Algebras Cuntz-Krieger Algebras Hochschild Homology K-Theory |
topic |
Leavitt Path Algebras Cuntz-Krieger Algebras Hochschild Homology K-Theory |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We compute the Hochschild homology of Leavitt path algebras over a field k. As an application, we show that L2 and L2 ⊗ L2 have different Hochschild homologies, and so they are not Morita equivalent; in particular, they are not isomorphic. Similarly, L∞ and L∞ ⊗ L∞ are distinguished by their Hochschild homologies, and so they are not Morita equivalent either. By contrast, we show that K-theory cannot distinguish these algebras; we have K∗(L2) = K∗(L2 ⊗ L2) = 0 and K∗(L∞) = K∗(L∞ ⊗ L∞) = K∗(k). Fil: Ara, Pere. Universidad de Barcelona; España Fil: Cortiñas, Guillermo Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "luis A. Santaló"; Argentina |
description |
We compute the Hochschild homology of Leavitt path algebras over a field k. As an application, we show that L2 and L2 ⊗ L2 have different Hochschild homologies, and so they are not Morita equivalent; in particular, they are not isomorphic. Similarly, L∞ and L∞ ⊗ L∞ are distinguished by their Hochschild homologies, and so they are not Morita equivalent either. By contrast, we show that K-theory cannot distinguish these algebras; we have K∗(L2) = K∗(L2 ⊗ L2) = 0 and K∗(L∞) = K∗(L∞ ⊗ L∞) = K∗(k). |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14840 Ara, Pere; Cortiñas, Guillermo Horacio; Tensor products of Leavitt path algebras; American Mathematical Society; Proceedings of the American Mathematical Society; 141; 8; 4-2013; 2629-2639 0002-9939 |
url |
http://hdl.handle.net/11336/14840 |
identifier_str_mv |
Ara, Pere; Cortiñas, Guillermo Horacio; Tensor products of Leavitt path algebras; American Mathematical Society; Proceedings of the American Mathematical Society; 141; 8; 4-2013; 2629-2639 0002-9939 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1090/S0002-9939-2013-11561-3 info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2013-141-08/S0002-9939-2013-11561-3/home.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269090062794752 |
score |
13.13397 |