Products of projections and self-adjoint operators

Autores
Arias, Maria Laura; Gonzalez, Maria Celeste
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let H be a Hilbert space and L(H) be the algebra of all bounded linear operators from H to H. Our goal in this article is to study the set P⋅Lh of operators in L(H) that can be factorized as the product of an orthogonal projection and a self-adjoint operator. We describe P⋅Lh and present optimal factorizations, in different senses, for an operator in this set.
Fil: Arias, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina
Fil: Gonzalez, Maria Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
Materia
FACTORIZATION OF OPERATORS
ORTHOGONAL PROJECTIONS
SELF-ADJOINT OPERATORS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/87429

id CONICETDig_73fcf35b674badf402a01093d35af5d0
oai_identifier_str oai:ri.conicet.gov.ar:11336/87429
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Products of projections and self-adjoint operatorsArias, Maria LauraGonzalez, Maria CelesteFACTORIZATION OF OPERATORSORTHOGONAL PROJECTIONSSELF-ADJOINT OPERATORShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let H be a Hilbert space and L(H) be the algebra of all bounded linear operators from H to H. Our goal in this article is to study the set P⋅Lh of operators in L(H) that can be factorized as the product of an orthogonal projection and a self-adjoint operator. We describe P⋅Lh and present optimal factorizations, in different senses, for an operator in this set.Fil: Arias, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; ArgentinaFil: Gonzalez, Maria Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaElsevier Science Inc2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87429Arias, Maria Laura; Gonzalez, Maria Celeste; Products of projections and self-adjoint operators; Elsevier Science Inc; Linear Algebra and its Applications; 555; 10-2018; 70-830024-3795CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379518302842info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2018.05.036info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:08Zoai:ri.conicet.gov.ar:11336/87429instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:08.374CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Products of projections and self-adjoint operators
title Products of projections and self-adjoint operators
spellingShingle Products of projections and self-adjoint operators
Arias, Maria Laura
FACTORIZATION OF OPERATORS
ORTHOGONAL PROJECTIONS
SELF-ADJOINT OPERATORS
title_short Products of projections and self-adjoint operators
title_full Products of projections and self-adjoint operators
title_fullStr Products of projections and self-adjoint operators
title_full_unstemmed Products of projections and self-adjoint operators
title_sort Products of projections and self-adjoint operators
dc.creator.none.fl_str_mv Arias, Maria Laura
Gonzalez, Maria Celeste
author Arias, Maria Laura
author_facet Arias, Maria Laura
Gonzalez, Maria Celeste
author_role author
author2 Gonzalez, Maria Celeste
author2_role author
dc.subject.none.fl_str_mv FACTORIZATION OF OPERATORS
ORTHOGONAL PROJECTIONS
SELF-ADJOINT OPERATORS
topic FACTORIZATION OF OPERATORS
ORTHOGONAL PROJECTIONS
SELF-ADJOINT OPERATORS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let H be a Hilbert space and L(H) be the algebra of all bounded linear operators from H to H. Our goal in this article is to study the set P⋅Lh of operators in L(H) that can be factorized as the product of an orthogonal projection and a self-adjoint operator. We describe P⋅Lh and present optimal factorizations, in different senses, for an operator in this set.
Fil: Arias, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina
Fil: Gonzalez, Maria Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
description Let H be a Hilbert space and L(H) be the algebra of all bounded linear operators from H to H. Our goal in this article is to study the set P⋅Lh of operators in L(H) that can be factorized as the product of an orthogonal projection and a self-adjoint operator. We describe P⋅Lh and present optimal factorizations, in different senses, for an operator in this set.
publishDate 2018
dc.date.none.fl_str_mv 2018-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/87429
Arias, Maria Laura; Gonzalez, Maria Celeste; Products of projections and self-adjoint operators; Elsevier Science Inc; Linear Algebra and its Applications; 555; 10-2018; 70-83
0024-3795
CONICET Digital
CONICET
url http://hdl.handle.net/11336/87429
identifier_str_mv Arias, Maria Laura; Gonzalez, Maria Celeste; Products of projections and self-adjoint operators; Elsevier Science Inc; Linear Algebra and its Applications; 555; 10-2018; 70-83
0024-3795
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379518302842
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2018.05.036
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Inc
publisher.none.fl_str_mv Elsevier Science Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269138391662592
score 13.13397