Products of projections and self-adjoint operators
- Autores
- Arias, Maria Laura; Gonzalez, Maria Celeste
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let H be a Hilbert space and L(H) be the algebra of all bounded linear operators from H to H. Our goal in this article is to study the set P⋅Lh of operators in L(H) that can be factorized as the product of an orthogonal projection and a self-adjoint operator. We describe P⋅Lh and present optimal factorizations, in different senses, for an operator in this set.
Fil: Arias, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina
Fil: Gonzalez, Maria Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina - Materia
-
FACTORIZATION OF OPERATORS
ORTHOGONAL PROJECTIONS
SELF-ADJOINT OPERATORS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/87429
Ver los metadatos del registro completo
id |
CONICETDig_73fcf35b674badf402a01093d35af5d0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/87429 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Products of projections and self-adjoint operatorsArias, Maria LauraGonzalez, Maria CelesteFACTORIZATION OF OPERATORSORTHOGONAL PROJECTIONSSELF-ADJOINT OPERATORShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let H be a Hilbert space and L(H) be the algebra of all bounded linear operators from H to H. Our goal in this article is to study the set P⋅Lh of operators in L(H) that can be factorized as the product of an orthogonal projection and a self-adjoint operator. We describe P⋅Lh and present optimal factorizations, in different senses, for an operator in this set.Fil: Arias, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; ArgentinaFil: Gonzalez, Maria Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaElsevier Science Inc2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87429Arias, Maria Laura; Gonzalez, Maria Celeste; Products of projections and self-adjoint operators; Elsevier Science Inc; Linear Algebra and its Applications; 555; 10-2018; 70-830024-3795CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379518302842info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2018.05.036info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:08Zoai:ri.conicet.gov.ar:11336/87429instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:08.374CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Products of projections and self-adjoint operators |
title |
Products of projections and self-adjoint operators |
spellingShingle |
Products of projections and self-adjoint operators Arias, Maria Laura FACTORIZATION OF OPERATORS ORTHOGONAL PROJECTIONS SELF-ADJOINT OPERATORS |
title_short |
Products of projections and self-adjoint operators |
title_full |
Products of projections and self-adjoint operators |
title_fullStr |
Products of projections and self-adjoint operators |
title_full_unstemmed |
Products of projections and self-adjoint operators |
title_sort |
Products of projections and self-adjoint operators |
dc.creator.none.fl_str_mv |
Arias, Maria Laura Gonzalez, Maria Celeste |
author |
Arias, Maria Laura |
author_facet |
Arias, Maria Laura Gonzalez, Maria Celeste |
author_role |
author |
author2 |
Gonzalez, Maria Celeste |
author2_role |
author |
dc.subject.none.fl_str_mv |
FACTORIZATION OF OPERATORS ORTHOGONAL PROJECTIONS SELF-ADJOINT OPERATORS |
topic |
FACTORIZATION OF OPERATORS ORTHOGONAL PROJECTIONS SELF-ADJOINT OPERATORS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let H be a Hilbert space and L(H) be the algebra of all bounded linear operators from H to H. Our goal in this article is to study the set P⋅Lh of operators in L(H) that can be factorized as the product of an orthogonal projection and a self-adjoint operator. We describe P⋅Lh and present optimal factorizations, in different senses, for an operator in this set. Fil: Arias, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina Fil: Gonzalez, Maria Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina |
description |
Let H be a Hilbert space and L(H) be the algebra of all bounded linear operators from H to H. Our goal in this article is to study the set P⋅Lh of operators in L(H) that can be factorized as the product of an orthogonal projection and a self-adjoint operator. We describe P⋅Lh and present optimal factorizations, in different senses, for an operator in this set. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/87429 Arias, Maria Laura; Gonzalez, Maria Celeste; Products of projections and self-adjoint operators; Elsevier Science Inc; Linear Algebra and its Applications; 555; 10-2018; 70-83 0024-3795 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/87429 |
identifier_str_mv |
Arias, Maria Laura; Gonzalez, Maria Celeste; Products of projections and self-adjoint operators; Elsevier Science Inc; Linear Algebra and its Applications; 555; 10-2018; 70-83 0024-3795 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379518302842 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2018.05.036 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Inc |
publisher.none.fl_str_mv |
Elsevier Science Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269138391662592 |
score |
13.13397 |