Products of projections and self-adjoint operators
- Autores
- Arias, Maria Laura; Gonzalez, Maria Celeste
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let H be a Hilbert space and L(H) be the algebra of all bounded linear operators from H to H. Our goal in this article is to study the set P⋅Lh of operators in L(H) that can be factorized as the product of an orthogonal projection and a self-adjoint operator. We describe P⋅Lh and present optimal factorizations, in different senses, for an operator in this set.
Fil: Arias, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina
Fil: Gonzalez, Maria Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina - Materia
-
FACTORIZATION OF OPERATORS
ORTHOGONAL PROJECTIONS
SELF-ADJOINT OPERATORS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/87429
Ver los metadatos del registro completo
| id |
CONICETDig_73fcf35b674badf402a01093d35af5d0 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/87429 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Products of projections and self-adjoint operatorsArias, Maria LauraGonzalez, Maria CelesteFACTORIZATION OF OPERATORSORTHOGONAL PROJECTIONSSELF-ADJOINT OPERATORShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let H be a Hilbert space and L(H) be the algebra of all bounded linear operators from H to H. Our goal in this article is to study the set P⋅Lh of operators in L(H) that can be factorized as the product of an orthogonal projection and a self-adjoint operator. We describe P⋅Lh and present optimal factorizations, in different senses, for an operator in this set.Fil: Arias, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; ArgentinaFil: Gonzalez, Maria Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaElsevier Science Inc2018-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87429Arias, Maria Laura; Gonzalez, Maria Celeste; Products of projections and self-adjoint operators; Elsevier Science Inc; Linear Algebra and its Applications; 555; 10-2018; 70-830024-3795CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379518302842info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2018.05.036info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:41:06Zoai:ri.conicet.gov.ar:11336/87429instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:41:06.535CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Products of projections and self-adjoint operators |
| title |
Products of projections and self-adjoint operators |
| spellingShingle |
Products of projections and self-adjoint operators Arias, Maria Laura FACTORIZATION OF OPERATORS ORTHOGONAL PROJECTIONS SELF-ADJOINT OPERATORS |
| title_short |
Products of projections and self-adjoint operators |
| title_full |
Products of projections and self-adjoint operators |
| title_fullStr |
Products of projections and self-adjoint operators |
| title_full_unstemmed |
Products of projections and self-adjoint operators |
| title_sort |
Products of projections and self-adjoint operators |
| dc.creator.none.fl_str_mv |
Arias, Maria Laura Gonzalez, Maria Celeste |
| author |
Arias, Maria Laura |
| author_facet |
Arias, Maria Laura Gonzalez, Maria Celeste |
| author_role |
author |
| author2 |
Gonzalez, Maria Celeste |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
FACTORIZATION OF OPERATORS ORTHOGONAL PROJECTIONS SELF-ADJOINT OPERATORS |
| topic |
FACTORIZATION OF OPERATORS ORTHOGONAL PROJECTIONS SELF-ADJOINT OPERATORS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let H be a Hilbert space and L(H) be the algebra of all bounded linear operators from H to H. Our goal in this article is to study the set P⋅Lh of operators in L(H) that can be factorized as the product of an orthogonal projection and a self-adjoint operator. We describe P⋅Lh and present optimal factorizations, in different senses, for an operator in this set. Fil: Arias, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Matemáticas; Argentina Fil: Gonzalez, Maria Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina |
| description |
Let H be a Hilbert space and L(H) be the algebra of all bounded linear operators from H to H. Our goal in this article is to study the set P⋅Lh of operators in L(H) that can be factorized as the product of an orthogonal projection and a self-adjoint operator. We describe P⋅Lh and present optimal factorizations, in different senses, for an operator in this set. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/87429 Arias, Maria Laura; Gonzalez, Maria Celeste; Products of projections and self-adjoint operators; Elsevier Science Inc; Linear Algebra and its Applications; 555; 10-2018; 70-83 0024-3795 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/87429 |
| identifier_str_mv |
Arias, Maria Laura; Gonzalez, Maria Celeste; Products of projections and self-adjoint operators; Elsevier Science Inc; Linear Algebra and its Applications; 555; 10-2018; 70-83 0024-3795 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379518302842 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2018.05.036 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science Inc |
| publisher.none.fl_str_mv |
Elsevier Science Inc |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597552855777280 |
| score |
13.24909 |