Minimal self-adjoint compact operators, moment of a subspace and joint numerical range
- Autores
- Bottazzi, Tamara Paula; Varela, Alejandro
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Revista con referato
Fil: Bottazzi, Tamara Paula. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
Fil: Bottazzi, Tamara Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina.
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática Alberto Calderón; Argentina.
Fil: Varela, Alejandro. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.
We define the (convex) joint numerical range for an infinite family of compact operators in a Hilbert space H. We use this set to determine whether a self-adjoint compact operator A with ±‖A‖ in its spectrum is minimal respect to the set of diagonals in a fixed basis E of H in the operator norm, that is ‖A‖≤‖A+D‖, for all diagonal D. We also describe the moment set mS=conv{|v|2:v∈S and ‖v‖=1} of a subspace S⊂H in terms of joint numerical ranges and obtain equivalences between the intersection of moments of two subspaces and of its two related joint numerical ranges. Moreover, we relate the condition of minimality of A or the intersection of the moments of the eigenspaces of ±‖A‖ to the intersection of the joint numerical ranges of two finite families of certain finite hermitian matrices. We also study geometric properties of the set mS such as extremal curves related with the basis E. All these conditions are directly related with the description of minimal self-adjoint compact operators. - Fuente
- Journal of Mathematical Analysis and Applications. Dic. 2023; 528(2): 1-22
https://www.sciencedirect.com/journal/journal-of-mathematical-analysis-and-applications/vol/528/issue/2 - Materia
-
Moment of Subspace
Self-Adjoint Compact Operators
Minimality
Joint Numerical Range
Matemáticas
Matemática Pura - Nivel de accesibilidad
- acceso restringido
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio

- Institución
- Universidad Nacional de General Sarmiento
- OAI Identificador
- oai:repositorio.ungs.edu.ar:UNGS/2699
Ver los metadatos del registro completo
| id |
RIUNGS_94f4c2cbe323c28da8e1acf028ace12a |
|---|---|
| oai_identifier_str |
oai:repositorio.ungs.edu.ar:UNGS/2699 |
| network_acronym_str |
RIUNGS |
| repository_id_str |
|
| network_name_str |
Repositorio Institucional UNGS |
| spelling |
Minimal self-adjoint compact operators, moment of a subspace and joint numerical rangeBottazzi, Tamara PaulaVarela, AlejandroMoment of SubspaceSelf-Adjoint Compact OperatorsMinimalityJoint Numerical RangeMatemáticasMatemática PuraRevista con referatoFil: Bottazzi, Tamara Paula. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.Fil: Bottazzi, Tamara Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina.Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática Alberto Calderón; Argentina.Fil: Varela, Alejandro. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina.We define the (convex) joint numerical range for an infinite family of compact operators in a Hilbert space H. We use this set to determine whether a self-adjoint compact operator A with ±‖A‖ in its spectrum is minimal respect to the set of diagonals in a fixed basis E of H in the operator norm, that is ‖A‖≤‖A+D‖, for all diagonal D. We also describe the moment set mS=conv{|v|2:v∈S and ‖v‖=1} of a subspace S⊂H in terms of joint numerical ranges and obtain equivalences between the intersection of moments of two subspaces and of its two related joint numerical ranges. Moreover, we relate the condition of minimality of A or the intersection of the moments of the eigenspaces of ±‖A‖ to the intersection of the joint numerical ranges of two finite families of certain finite hermitian matrices. We also study geometric properties of the set mS such as extremal curves related with the basis E. All these conditions are directly related with the description of minimal self-adjoint compact operators.Elsevier Science2026-01-14T11:46:13Z2026-01-14T11:46:13Z2023info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfBottazzi, T. P. y Varela, A. (2023). Minimal self-adjoint compact operators, moment of a subspace and joint numerical range. Journal of Mathematical Analysis and Applications, 528(2), 1-22.0022-247Xhttp://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2699Journal of Mathematical Analysis and Applications. Dic. 2023; 528(2): 1-22https://www.sciencedirect.com/journal/journal-of-mathematical-analysis-and-applications/vol/528/issue/2reponame:Repositorio Institucional UNGSinstname:Universidad Nacional de General Sarmientoenghttps://doi.org/10.1016/j.jmaa.2023.127552info:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/2026-02-04T10:48:41Zoai:repositorio.ungs.edu.ar:UNGS/2699instacron:UNGSInstitucionalhttp://repositorio.ungs.edu.ar:8080/Universidad públicahttps://www.ungs.edu.ar/http://repositorio.ungs.edu.ar:8080/oaiubyd@campus.ungs.edu.arArgentinaopendoar:2026-02-04 10:48:41.863Repositorio Institucional UNGS - Universidad Nacional de General Sarmientofalse |
| dc.title.none.fl_str_mv |
Minimal self-adjoint compact operators, moment of a subspace and joint numerical range |
| title |
Minimal self-adjoint compact operators, moment of a subspace and joint numerical range |
| spellingShingle |
Minimal self-adjoint compact operators, moment of a subspace and joint numerical range Bottazzi, Tamara Paula Moment of Subspace Self-Adjoint Compact Operators Minimality Joint Numerical Range Matemáticas Matemática Pura |
| title_short |
Minimal self-adjoint compact operators, moment of a subspace and joint numerical range |
| title_full |
Minimal self-adjoint compact operators, moment of a subspace and joint numerical range |
| title_fullStr |
Minimal self-adjoint compact operators, moment of a subspace and joint numerical range |
| title_full_unstemmed |
Minimal self-adjoint compact operators, moment of a subspace and joint numerical range |
| title_sort |
Minimal self-adjoint compact operators, moment of a subspace and joint numerical range |
| dc.creator.none.fl_str_mv |
Bottazzi, Tamara Paula Varela, Alejandro |
| author |
Bottazzi, Tamara Paula |
| author_facet |
Bottazzi, Tamara Paula Varela, Alejandro |
| author_role |
author |
| author2 |
Varela, Alejandro |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Moment of Subspace Self-Adjoint Compact Operators Minimality Joint Numerical Range Matemáticas Matemática Pura |
| topic |
Moment of Subspace Self-Adjoint Compact Operators Minimality Joint Numerical Range Matemáticas Matemática Pura |
| dc.description.none.fl_txt_mv |
Revista con referato Fil: Bottazzi, Tamara Paula. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Fil: Bottazzi, Tamara Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto Argentino de Matemática Alberto Calderón; Argentina. Fil: Varela, Alejandro. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. We define the (convex) joint numerical range for an infinite family of compact operators in a Hilbert space H. We use this set to determine whether a self-adjoint compact operator A with ±‖A‖ in its spectrum is minimal respect to the set of diagonals in a fixed basis E of H in the operator norm, that is ‖A‖≤‖A+D‖, for all diagonal D. We also describe the moment set mS=conv{|v|2:v∈S and ‖v‖=1} of a subspace S⊂H in terms of joint numerical ranges and obtain equivalences between the intersection of moments of two subspaces and of its two related joint numerical ranges. Moreover, we relate the condition of minimality of A or the intersection of the moments of the eigenspaces of ±‖A‖ to the intersection of the joint numerical ranges of two finite families of certain finite hermitian matrices. We also study geometric properties of the set mS such as extremal curves related with the basis E. All these conditions are directly related with the description of minimal self-adjoint compact operators. |
| description |
Revista con referato |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023 2026-01-14T11:46:13Z 2026-01-14T11:46:13Z |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
Bottazzi, T. P. y Varela, A. (2023). Minimal self-adjoint compact operators, moment of a subspace and joint numerical range. Journal of Mathematical Analysis and Applications, 528(2), 1-22. 0022-247X http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2699 |
| identifier_str_mv |
Bottazzi, T. P. y Varela, A. (2023). Minimal self-adjoint compact operators, moment of a subspace and joint numerical range. Journal of Mathematical Analysis and Applications, 528(2), 1-22. 0022-247X |
| url |
http://repositorio.ungs.edu.ar:8080/xmlui/handle/UNGS/2699 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
https://doi.org/10.1016/j.jmaa.2023.127552 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
restrictedAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science |
| publisher.none.fl_str_mv |
Elsevier Science |
| dc.source.none.fl_str_mv |
Journal of Mathematical Analysis and Applications. Dic. 2023; 528(2): 1-22 https://www.sciencedirect.com/journal/journal-of-mathematical-analysis-and-applications/vol/528/issue/2 reponame:Repositorio Institucional UNGS instname:Universidad Nacional de General Sarmiento |
| reponame_str |
Repositorio Institucional UNGS |
| collection |
Repositorio Institucional UNGS |
| instname_str |
Universidad Nacional de General Sarmiento |
| repository.name.fl_str_mv |
Repositorio Institucional UNGS - Universidad Nacional de General Sarmiento |
| repository.mail.fl_str_mv |
ubyd@campus.ungs.edu.ar |
| _version_ |
1856205329990156288 |
| score |
13.106097 |