Unusual poles of the zeta-functions for some regular singular differential operators

Autores
Falomir, Horacio Alberto; Muschietti, Maria Amelia; González Pisani, Pablo Andrés; Seeley, R.
Año de publicación
2003
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider the resolvent of a system of first order differential operators with a regular singularity, admitting a family of self-adjoint extensions. We find that the asymptotic expansion for the resolvent in the general case presents powers of \lambda which depend on the singularity, and can take even irrational values. The consequences for the pole structure of the corresponding \zeta and \eta-functions are also discussed.
Fil: Falomir, Horacio Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Muschietti, Maria Amelia. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: González Pisani, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Seeley, R.. University of Massachusetts at Boston; Estados Unidos
Materia
Ζ - And Η-Functions
Pole Structure
Self-Adjoint Extensions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/74083

id CONICETDig_75739a2208586cf78e49c5591bb13188
oai_identifier_str oai:ri.conicet.gov.ar:11336/74083
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Unusual poles of the zeta-functions for some regular singular differential operatorsFalomir, Horacio AlbertoMuschietti, Maria AmeliaGonzález Pisani, Pablo AndrésSeeley, R.Ζ - And Η-FunctionsPole StructureSelf-Adjoint Extensionshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We consider the resolvent of a system of first order differential operators with a regular singularity, admitting a family of self-adjoint extensions. We find that the asymptotic expansion for the resolvent in the general case presents powers of \lambda which depend on the singularity, and can take even irrational values. The consequences for the pole structure of the corresponding \zeta and \eta-functions are also discussed.Fil: Falomir, Horacio Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Muschietti, Maria Amelia. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: González Pisani, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Seeley, R.. University of Massachusetts at Boston; Estados UnidosIOP Publishing2003-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/74083Falomir, Horacio Alberto; Muschietti, Maria Amelia; González Pisani, Pablo Andrés; Seeley, R.; Unusual poles of the zeta-functions for some regular singular differential operators; IOP Publishing; Journal of Physics A: Mathematical and General; A36; 12-2003; 9991-100100305-44701361-644CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0305-4470/36/39/302/metainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:09:13Zoai:ri.conicet.gov.ar:11336/74083instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:09:13.91CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Unusual poles of the zeta-functions for some regular singular differential operators
title Unusual poles of the zeta-functions for some regular singular differential operators
spellingShingle Unusual poles of the zeta-functions for some regular singular differential operators
Falomir, Horacio Alberto
Ζ - And Η-Functions
Pole Structure
Self-Adjoint Extensions
title_short Unusual poles of the zeta-functions for some regular singular differential operators
title_full Unusual poles of the zeta-functions for some regular singular differential operators
title_fullStr Unusual poles of the zeta-functions for some regular singular differential operators
title_full_unstemmed Unusual poles of the zeta-functions for some regular singular differential operators
title_sort Unusual poles of the zeta-functions for some regular singular differential operators
dc.creator.none.fl_str_mv Falomir, Horacio Alberto
Muschietti, Maria Amelia
González Pisani, Pablo Andrés
Seeley, R.
author Falomir, Horacio Alberto
author_facet Falomir, Horacio Alberto
Muschietti, Maria Amelia
González Pisani, Pablo Andrés
Seeley, R.
author_role author
author2 Muschietti, Maria Amelia
González Pisani, Pablo Andrés
Seeley, R.
author2_role author
author
author
dc.subject.none.fl_str_mv Ζ - And Η-Functions
Pole Structure
Self-Adjoint Extensions
topic Ζ - And Η-Functions
Pole Structure
Self-Adjoint Extensions
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider the resolvent of a system of first order differential operators with a regular singularity, admitting a family of self-adjoint extensions. We find that the asymptotic expansion for the resolvent in the general case presents powers of \lambda which depend on the singularity, and can take even irrational values. The consequences for the pole structure of the corresponding \zeta and \eta-functions are also discussed.
Fil: Falomir, Horacio Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Muschietti, Maria Amelia. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: González Pisani, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Seeley, R.. University of Massachusetts at Boston; Estados Unidos
description We consider the resolvent of a system of first order differential operators with a regular singularity, admitting a family of self-adjoint extensions. We find that the asymptotic expansion for the resolvent in the general case presents powers of \lambda which depend on the singularity, and can take even irrational values. The consequences for the pole structure of the corresponding \zeta and \eta-functions are also discussed.
publishDate 2003
dc.date.none.fl_str_mv 2003-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/74083
Falomir, Horacio Alberto; Muschietti, Maria Amelia; González Pisani, Pablo Andrés; Seeley, R.; Unusual poles of the zeta-functions for some regular singular differential operators; IOP Publishing; Journal of Physics A: Mathematical and General; A36; 12-2003; 9991-10010
0305-4470
1361-644
CONICET Digital
CONICET
url http://hdl.handle.net/11336/74083
identifier_str_mv Falomir, Horacio Alberto; Muschietti, Maria Amelia; González Pisani, Pablo Andrés; Seeley, R.; Unusual poles of the zeta-functions for some regular singular differential operators; IOP Publishing; Journal of Physics A: Mathematical and General; A36; 12-2003; 9991-10010
0305-4470
1361-644
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0305-4470/36/39/302/meta
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980449567113216
score 13.004268