Unusual poles of the zeta-functions for some regular singular differential operators
- Autores
- Falomir, Horacio Alberto; Muschietti, Maria Amelia; González Pisani, Pablo Andrés; Seeley, R.
- Año de publicación
- 2003
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider the resolvent of a system of first order differential operators with a regular singularity, admitting a family of self-adjoint extensions. We find that the asymptotic expansion for the resolvent in the general case presents powers of \lambda which depend on the singularity, and can take even irrational values. The consequences for the pole structure of the corresponding \zeta and \eta-functions are also discussed.
Fil: Falomir, Horacio Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Muschietti, Maria Amelia. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina
Fil: González Pisani, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Seeley, R.. University of Massachusetts at Boston; Estados Unidos - Materia
-
Ζ - And Η-Functions
Pole Structure
Self-Adjoint Extensions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/74083
Ver los metadatos del registro completo
id |
CONICETDig_75739a2208586cf78e49c5591bb13188 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/74083 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Unusual poles of the zeta-functions for some regular singular differential operatorsFalomir, Horacio AlbertoMuschietti, Maria AmeliaGonzález Pisani, Pablo AndrésSeeley, R.Ζ - And Η-FunctionsPole StructureSelf-Adjoint Extensionshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We consider the resolvent of a system of first order differential operators with a regular singularity, admitting a family of self-adjoint extensions. We find that the asymptotic expansion for the resolvent in the general case presents powers of \lambda which depend on the singularity, and can take even irrational values. The consequences for the pole structure of the corresponding \zeta and \eta-functions are also discussed.Fil: Falomir, Horacio Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Muschietti, Maria Amelia. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaFil: González Pisani, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Seeley, R.. University of Massachusetts at Boston; Estados UnidosIOP Publishing2003-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/74083Falomir, Horacio Alberto; Muschietti, Maria Amelia; González Pisani, Pablo Andrés; Seeley, R.; Unusual poles of the zeta-functions for some regular singular differential operators; IOP Publishing; Journal of Physics A: Mathematical and General; A36; 12-2003; 9991-100100305-44701361-644CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0305-4470/36/39/302/metainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:09:13Zoai:ri.conicet.gov.ar:11336/74083instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:09:13.91CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Unusual poles of the zeta-functions for some regular singular differential operators |
title |
Unusual poles of the zeta-functions for some regular singular differential operators |
spellingShingle |
Unusual poles of the zeta-functions for some regular singular differential operators Falomir, Horacio Alberto Ζ - And Η-Functions Pole Structure Self-Adjoint Extensions |
title_short |
Unusual poles of the zeta-functions for some regular singular differential operators |
title_full |
Unusual poles of the zeta-functions for some regular singular differential operators |
title_fullStr |
Unusual poles of the zeta-functions for some regular singular differential operators |
title_full_unstemmed |
Unusual poles of the zeta-functions for some regular singular differential operators |
title_sort |
Unusual poles of the zeta-functions for some regular singular differential operators |
dc.creator.none.fl_str_mv |
Falomir, Horacio Alberto Muschietti, Maria Amelia González Pisani, Pablo Andrés Seeley, R. |
author |
Falomir, Horacio Alberto |
author_facet |
Falomir, Horacio Alberto Muschietti, Maria Amelia González Pisani, Pablo Andrés Seeley, R. |
author_role |
author |
author2 |
Muschietti, Maria Amelia González Pisani, Pablo Andrés Seeley, R. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ζ - And Η-Functions Pole Structure Self-Adjoint Extensions |
topic |
Ζ - And Η-Functions Pole Structure Self-Adjoint Extensions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider the resolvent of a system of first order differential operators with a regular singularity, admitting a family of self-adjoint extensions. We find that the asymptotic expansion for the resolvent in the general case presents powers of \lambda which depend on the singularity, and can take even irrational values. The consequences for the pole structure of the corresponding \zeta and \eta-functions are also discussed. Fil: Falomir, Horacio Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Muschietti, Maria Amelia. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina Fil: González Pisani, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Seeley, R.. University of Massachusetts at Boston; Estados Unidos |
description |
We consider the resolvent of a system of first order differential operators with a regular singularity, admitting a family of self-adjoint extensions. We find that the asymptotic expansion for the resolvent in the general case presents powers of \lambda which depend on the singularity, and can take even irrational values. The consequences for the pole structure of the corresponding \zeta and \eta-functions are also discussed. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/74083 Falomir, Horacio Alberto; Muschietti, Maria Amelia; González Pisani, Pablo Andrés; Seeley, R.; Unusual poles of the zeta-functions for some regular singular differential operators; IOP Publishing; Journal of Physics A: Mathematical and General; A36; 12-2003; 9991-10010 0305-4470 1361-644 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/74083 |
identifier_str_mv |
Falomir, Horacio Alberto; Muschietti, Maria Amelia; González Pisani, Pablo Andrés; Seeley, R.; Unusual poles of the zeta-functions for some regular singular differential operators; IOP Publishing; Journal of Physics A: Mathematical and General; A36; 12-2003; 9991-10010 0305-4470 1361-644 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/0305-4470/36/39/302/meta |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980449567113216 |
score |
13.004268 |