Modularity of the Consani-Scholten Quintic

Autores
Dieulefait, Luis; Schutt, Matthias; Pacetti, Ariel Martín
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We prove that the Consani-Scholten quintic, a Calabi-Yau threefold over Q, is Hilbert modular. For this, we refine several techniques known from the context of modular forms. Most notably, we extend the Faltings-Serre-Livn ́ e method to induced four-dimensional Galois representations over Q. We also need a Sturm bound for Hilbert modular forms; this is developed in an appendix by Jose Burgos Gil and the second author.
Fil: Dieulefait, Luis. No especifíca;
Fil: Schutt, Matthias. No especifíca;
Fil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Materia
Consani-Scholten quintic
Hilbert modular form
Sturm bound
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/125777

id CONICETDig_35ca794517933c1699658cc1a3e76223
oai_identifier_str oai:ri.conicet.gov.ar:11336/125777
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Modularity of the Consani-Scholten QuinticDieulefait, LuisSchutt, MatthiasPacetti, Ariel MartínConsani-Scholten quinticHilbert modular formSturm boundhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove that the Consani-Scholten quintic, a Calabi-Yau threefold over Q, is Hilbert modular. For this, we refine several techniques known from the context of modular forms. Most notably, we extend the Faltings-Serre-Livn ́ e method to induced four-dimensional Galois representations over Q. We also need a Sturm bound for Hilbert modular forms; this is developed in an appendix by Jose Burgos Gil and the second author.Fil: Dieulefait, Luis. No especifíca;Fil: Schutt, Matthias. No especifíca;Fil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaUniversität Bielefeld2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/125777Dieulefait, Luis; Schutt, Matthias; Pacetti, Ariel Martín; Modularity of the Consani-Scholten Quintic; Universität Bielefeld; Documenta Mathematica; 17; 12-2012; 953-9881431-0643CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://emis.maths.adelaide.edu.au/journals/DMJDMV/vol-17/28.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:35Zoai:ri.conicet.gov.ar:11336/125777instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:35.742CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Modularity of the Consani-Scholten Quintic
title Modularity of the Consani-Scholten Quintic
spellingShingle Modularity of the Consani-Scholten Quintic
Dieulefait, Luis
Consani-Scholten quintic
Hilbert modular form
Sturm bound
title_short Modularity of the Consani-Scholten Quintic
title_full Modularity of the Consani-Scholten Quintic
title_fullStr Modularity of the Consani-Scholten Quintic
title_full_unstemmed Modularity of the Consani-Scholten Quintic
title_sort Modularity of the Consani-Scholten Quintic
dc.creator.none.fl_str_mv Dieulefait, Luis
Schutt, Matthias
Pacetti, Ariel Martín
author Dieulefait, Luis
author_facet Dieulefait, Luis
Schutt, Matthias
Pacetti, Ariel Martín
author_role author
author2 Schutt, Matthias
Pacetti, Ariel Martín
author2_role author
author
dc.subject.none.fl_str_mv Consani-Scholten quintic
Hilbert modular form
Sturm bound
topic Consani-Scholten quintic
Hilbert modular form
Sturm bound
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We prove that the Consani-Scholten quintic, a Calabi-Yau threefold over Q, is Hilbert modular. For this, we refine several techniques known from the context of modular forms. Most notably, we extend the Faltings-Serre-Livn ́ e method to induced four-dimensional Galois representations over Q. We also need a Sturm bound for Hilbert modular forms; this is developed in an appendix by Jose Burgos Gil and the second author.
Fil: Dieulefait, Luis. No especifíca;
Fil: Schutt, Matthias. No especifíca;
Fil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
description We prove that the Consani-Scholten quintic, a Calabi-Yau threefold over Q, is Hilbert modular. For this, we refine several techniques known from the context of modular forms. Most notably, we extend the Faltings-Serre-Livn ́ e method to induced four-dimensional Galois representations over Q. We also need a Sturm bound for Hilbert modular forms; this is developed in an appendix by Jose Burgos Gil and the second author.
publishDate 2012
dc.date.none.fl_str_mv 2012-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/125777
Dieulefait, Luis; Schutt, Matthias; Pacetti, Ariel Martín; Modularity of the Consani-Scholten Quintic; Universität Bielefeld; Documenta Mathematica; 17; 12-2012; 953-988
1431-0643
CONICET Digital
CONICET
url http://hdl.handle.net/11336/125777
identifier_str_mv Dieulefait, Luis; Schutt, Matthias; Pacetti, Ariel Martín; Modularity of the Consani-Scholten Quintic; Universität Bielefeld; Documenta Mathematica; 17; 12-2012; 953-988
1431-0643
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://emis.maths.adelaide.edu.au/journals/DMJDMV/vol-17/28.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universität Bielefeld
publisher.none.fl_str_mv Universität Bielefeld
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268930903638016
score 13.13397