Modularity of the Consani-Scholten Quintic
- Autores
- Dieulefait, Luis; Schutt, Matthias; Pacetti, Ariel Martín
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove that the Consani-Scholten quintic, a Calabi-Yau threefold over Q, is Hilbert modular. For this, we refine several techniques known from the context of modular forms. Most notably, we extend the Faltings-Serre-Livn ́ e method to induced four-dimensional Galois representations over Q. We also need a Sturm bound for Hilbert modular forms; this is developed in an appendix by Jose Burgos Gil and the second author.
Fil: Dieulefait, Luis. No especifíca;
Fil: Schutt, Matthias. No especifíca;
Fil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina - Materia
-
Consani-Scholten quintic
Hilbert modular form
Sturm bound - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/125777
Ver los metadatos del registro completo
id |
CONICETDig_35ca794517933c1699658cc1a3e76223 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/125777 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Modularity of the Consani-Scholten QuinticDieulefait, LuisSchutt, MatthiasPacetti, Ariel MartínConsani-Scholten quinticHilbert modular formSturm boundhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove that the Consani-Scholten quintic, a Calabi-Yau threefold over Q, is Hilbert modular. For this, we refine several techniques known from the context of modular forms. Most notably, we extend the Faltings-Serre-Livn ́ e method to induced four-dimensional Galois representations over Q. We also need a Sturm bound for Hilbert modular forms; this is developed in an appendix by Jose Burgos Gil and the second author.Fil: Dieulefait, Luis. No especifíca;Fil: Schutt, Matthias. No especifíca;Fil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaUniversität Bielefeld2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/125777Dieulefait, Luis; Schutt, Matthias; Pacetti, Ariel Martín; Modularity of the Consani-Scholten Quintic; Universität Bielefeld; Documenta Mathematica; 17; 12-2012; 953-9881431-0643CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://emis.maths.adelaide.edu.au/journals/DMJDMV/vol-17/28.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:35Zoai:ri.conicet.gov.ar:11336/125777instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:35.742CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Modularity of the Consani-Scholten Quintic |
title |
Modularity of the Consani-Scholten Quintic |
spellingShingle |
Modularity of the Consani-Scholten Quintic Dieulefait, Luis Consani-Scholten quintic Hilbert modular form Sturm bound |
title_short |
Modularity of the Consani-Scholten Quintic |
title_full |
Modularity of the Consani-Scholten Quintic |
title_fullStr |
Modularity of the Consani-Scholten Quintic |
title_full_unstemmed |
Modularity of the Consani-Scholten Quintic |
title_sort |
Modularity of the Consani-Scholten Quintic |
dc.creator.none.fl_str_mv |
Dieulefait, Luis Schutt, Matthias Pacetti, Ariel Martín |
author |
Dieulefait, Luis |
author_facet |
Dieulefait, Luis Schutt, Matthias Pacetti, Ariel Martín |
author_role |
author |
author2 |
Schutt, Matthias Pacetti, Ariel Martín |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Consani-Scholten quintic Hilbert modular form Sturm bound |
topic |
Consani-Scholten quintic Hilbert modular form Sturm bound |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove that the Consani-Scholten quintic, a Calabi-Yau threefold over Q, is Hilbert modular. For this, we refine several techniques known from the context of modular forms. Most notably, we extend the Faltings-Serre-Livn ́ e method to induced four-dimensional Galois representations over Q. We also need a Sturm bound for Hilbert modular forms; this is developed in an appendix by Jose Burgos Gil and the second author. Fil: Dieulefait, Luis. No especifíca; Fil: Schutt, Matthias. No especifíca; Fil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina |
description |
We prove that the Consani-Scholten quintic, a Calabi-Yau threefold over Q, is Hilbert modular. For this, we refine several techniques known from the context of modular forms. Most notably, we extend the Faltings-Serre-Livn ́ e method to induced four-dimensional Galois representations over Q. We also need a Sturm bound for Hilbert modular forms; this is developed in an appendix by Jose Burgos Gil and the second author. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/125777 Dieulefait, Luis; Schutt, Matthias; Pacetti, Ariel Martín; Modularity of the Consani-Scholten Quintic; Universität Bielefeld; Documenta Mathematica; 17; 12-2012; 953-988 1431-0643 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/125777 |
identifier_str_mv |
Dieulefait, Luis; Schutt, Matthias; Pacetti, Ariel Martín; Modularity of the Consani-Scholten Quintic; Universität Bielefeld; Documenta Mathematica; 17; 12-2012; 953-988 1431-0643 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://emis.maths.adelaide.edu.au/journals/DMJDMV/vol-17/28.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universität Bielefeld |
publisher.none.fl_str_mv |
Universität Bielefeld |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268930903638016 |
score |
13.13397 |