Modularity of the Consani-Scholten Quintic
- Autores
- Dieulefait, Luis; Schutt, Matthias; Pacetti, Ariel Martín
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove that the Consani-Scholten quintic, a Calabi-Yau threefold over Q, is Hilbert modular. For this, we refine several techniques known from the context of modular forms. Most notably, we extend the Faltings-Serre-Livn ́ e method to induced four-dimensional Galois representations over Q. We also need a Sturm bound for Hilbert modular forms; this is developed in an appendix by Jose Burgos Gil and the second author.
Fil: Dieulefait, Luis. No especifíca;
Fil: Schutt, Matthias. No especifíca;
Fil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina - Materia
-
Consani-Scholten quintic
Hilbert modular form
Sturm bound - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/125777
Ver los metadatos del registro completo
| id |
CONICETDig_35ca794517933c1699658cc1a3e76223 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/125777 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Modularity of the Consani-Scholten QuinticDieulefait, LuisSchutt, MatthiasPacetti, Ariel MartínConsani-Scholten quinticHilbert modular formSturm boundhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove that the Consani-Scholten quintic, a Calabi-Yau threefold over Q, is Hilbert modular. For this, we refine several techniques known from the context of modular forms. Most notably, we extend the Faltings-Serre-Livn ́ e method to induced four-dimensional Galois representations over Q. We also need a Sturm bound for Hilbert modular forms; this is developed in an appendix by Jose Burgos Gil and the second author.Fil: Dieulefait, Luis. No especifíca;Fil: Schutt, Matthias. No especifíca;Fil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaUniversität Bielefeld2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/125777Dieulefait, Luis; Schutt, Matthias; Pacetti, Ariel Martín; Modularity of the Consani-Scholten Quintic; Universität Bielefeld; Documenta Mathematica; 17; 12-2012; 953-9881431-0643CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://emis.maths.adelaide.edu.au/journals/DMJDMV/vol-17/28.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:37:47Zoai:ri.conicet.gov.ar:11336/125777instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:37:47.445CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Modularity of the Consani-Scholten Quintic |
| title |
Modularity of the Consani-Scholten Quintic |
| spellingShingle |
Modularity of the Consani-Scholten Quintic Dieulefait, Luis Consani-Scholten quintic Hilbert modular form Sturm bound |
| title_short |
Modularity of the Consani-Scholten Quintic |
| title_full |
Modularity of the Consani-Scholten Quintic |
| title_fullStr |
Modularity of the Consani-Scholten Quintic |
| title_full_unstemmed |
Modularity of the Consani-Scholten Quintic |
| title_sort |
Modularity of the Consani-Scholten Quintic |
| dc.creator.none.fl_str_mv |
Dieulefait, Luis Schutt, Matthias Pacetti, Ariel Martín |
| author |
Dieulefait, Luis |
| author_facet |
Dieulefait, Luis Schutt, Matthias Pacetti, Ariel Martín |
| author_role |
author |
| author2 |
Schutt, Matthias Pacetti, Ariel Martín |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Consani-Scholten quintic Hilbert modular form Sturm bound |
| topic |
Consani-Scholten quintic Hilbert modular form Sturm bound |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We prove that the Consani-Scholten quintic, a Calabi-Yau threefold over Q, is Hilbert modular. For this, we refine several techniques known from the context of modular forms. Most notably, we extend the Faltings-Serre-Livn ́ e method to induced four-dimensional Galois representations over Q. We also need a Sturm bound for Hilbert modular forms; this is developed in an appendix by Jose Burgos Gil and the second author. Fil: Dieulefait, Luis. No especifíca; Fil: Schutt, Matthias. No especifíca; Fil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina |
| description |
We prove that the Consani-Scholten quintic, a Calabi-Yau threefold over Q, is Hilbert modular. For this, we refine several techniques known from the context of modular forms. Most notably, we extend the Faltings-Serre-Livn ́ e method to induced four-dimensional Galois representations over Q. We also need a Sturm bound for Hilbert modular forms; this is developed in an appendix by Jose Burgos Gil and the second author. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/125777 Dieulefait, Luis; Schutt, Matthias; Pacetti, Ariel Martín; Modularity of the Consani-Scholten Quintic; Universität Bielefeld; Documenta Mathematica; 17; 12-2012; 953-988 1431-0643 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/125777 |
| identifier_str_mv |
Dieulefait, Luis; Schutt, Matthias; Pacetti, Ariel Martín; Modularity of the Consani-Scholten Quintic; Universität Bielefeld; Documenta Mathematica; 17; 12-2012; 953-988 1431-0643 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://emis.maths.adelaide.edu.au/journals/DMJDMV/vol-17/28.pdf |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Universität Bielefeld |
| publisher.none.fl_str_mv |
Universität Bielefeld |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597336971804672 |
| score |
13.24909 |