Non-paritious Hilbert modular forms

Autores
Dembélé, Lassina; Loeffler, David; Pacetti, Ariel Martín
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The arithmetic of Hilbert modular forms has been extensively studied under the assumption that the forms concerned are “paritious”—all the components of the weight are congruent modulo 2. In contrast, non-paritious Hilbert modular forms have been relatively little studied, both from a theoretical and a computational standpoint. In this article, we aim to redress the balance somewhat by studying the arithmetic of non-paritious Hilbert modular eigenforms. On the theoretical side, our starting point is a theorem of Patrikis, which associates projectiveℓ-adic Galois representations to these forms. We show that a general conjecture of Buzzard and Gee actually predicts that a strengthening of Patrikis’ result should hold, giving Galois representations into certain groups intermediate between GL2 and PGL 2 ; and we verify that the predicted Galois representations do indeed exist. On the computational side, we give an algorithm to compute non-paritious Hilbert modular forms using definite quaternion algebras. To our knowledge, this is the first time such a general method has been presented. We end the article with an example.
Fil: Dembélé, Lassina. Institute Max Planck For Mathematics; Alemania
Fil: Loeffler, David. University of Warwick; Reino Unido
Fil: Pacetti, Ariel Martín. University of Warwick; Reino Unido. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
GALOIS REPRESENTATIONS
HILBERT MODULAR FORMS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/119772

id CONICETDig_dc4da0fea922e8bca54f57e096161c57
oai_identifier_str oai:ri.conicet.gov.ar:11336/119772
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Non-paritious Hilbert modular formsDembélé, LassinaLoeffler, DavidPacetti, Ariel MartínGALOIS REPRESENTATIONSHILBERT MODULAR FORMShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The arithmetic of Hilbert modular forms has been extensively studied under the assumption that the forms concerned are “paritious”—all the components of the weight are congruent modulo 2. In contrast, non-paritious Hilbert modular forms have been relatively little studied, both from a theoretical and a computational standpoint. In this article, we aim to redress the balance somewhat by studying the arithmetic of non-paritious Hilbert modular eigenforms. On the theoretical side, our starting point is a theorem of Patrikis, which associates projectiveℓ-adic Galois representations to these forms. We show that a general conjecture of Buzzard and Gee actually predicts that a strengthening of Patrikis’ result should hold, giving Galois representations into certain groups intermediate between GL2 and PGL 2 ; and we verify that the predicted Galois representations do indeed exist. On the computational side, we give an algorithm to compute non-paritious Hilbert modular forms using definite quaternion algebras. To our knowledge, this is the first time such a general method has been presented. We end the article with an example.Fil: Dembélé, Lassina. Institute Max Planck For Mathematics; AlemaniaFil: Loeffler, David. University of Warwick; Reino UnidoFil: Pacetti, Ariel Martín. University of Warwick; Reino Unido. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaSpringer2019-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/119772Dembélé, Lassina; Loeffler, David; Pacetti, Ariel Martín; Non-paritious Hilbert modular forms; Springer; Mathematische Zeitschrift; 292; 1-2; 1-6-2019; 361-3850025-58741432-1823CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00209-019-02229-5info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00209-019-02229-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:24Zoai:ri.conicet.gov.ar:11336/119772instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:25.127CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Non-paritious Hilbert modular forms
title Non-paritious Hilbert modular forms
spellingShingle Non-paritious Hilbert modular forms
Dembélé, Lassina
GALOIS REPRESENTATIONS
HILBERT MODULAR FORMS
title_short Non-paritious Hilbert modular forms
title_full Non-paritious Hilbert modular forms
title_fullStr Non-paritious Hilbert modular forms
title_full_unstemmed Non-paritious Hilbert modular forms
title_sort Non-paritious Hilbert modular forms
dc.creator.none.fl_str_mv Dembélé, Lassina
Loeffler, David
Pacetti, Ariel Martín
author Dembélé, Lassina
author_facet Dembélé, Lassina
Loeffler, David
Pacetti, Ariel Martín
author_role author
author2 Loeffler, David
Pacetti, Ariel Martín
author2_role author
author
dc.subject.none.fl_str_mv GALOIS REPRESENTATIONS
HILBERT MODULAR FORMS
topic GALOIS REPRESENTATIONS
HILBERT MODULAR FORMS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The arithmetic of Hilbert modular forms has been extensively studied under the assumption that the forms concerned are “paritious”—all the components of the weight are congruent modulo 2. In contrast, non-paritious Hilbert modular forms have been relatively little studied, both from a theoretical and a computational standpoint. In this article, we aim to redress the balance somewhat by studying the arithmetic of non-paritious Hilbert modular eigenforms. On the theoretical side, our starting point is a theorem of Patrikis, which associates projectiveℓ-adic Galois representations to these forms. We show that a general conjecture of Buzzard and Gee actually predicts that a strengthening of Patrikis’ result should hold, giving Galois representations into certain groups intermediate between GL2 and PGL 2 ; and we verify that the predicted Galois representations do indeed exist. On the computational side, we give an algorithm to compute non-paritious Hilbert modular forms using definite quaternion algebras. To our knowledge, this is the first time such a general method has been presented. We end the article with an example.
Fil: Dembélé, Lassina. Institute Max Planck For Mathematics; Alemania
Fil: Loeffler, David. University of Warwick; Reino Unido
Fil: Pacetti, Ariel Martín. University of Warwick; Reino Unido. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description The arithmetic of Hilbert modular forms has been extensively studied under the assumption that the forms concerned are “paritious”—all the components of the weight are congruent modulo 2. In contrast, non-paritious Hilbert modular forms have been relatively little studied, both from a theoretical and a computational standpoint. In this article, we aim to redress the balance somewhat by studying the arithmetic of non-paritious Hilbert modular eigenforms. On the theoretical side, our starting point is a theorem of Patrikis, which associates projectiveℓ-adic Galois representations to these forms. We show that a general conjecture of Buzzard and Gee actually predicts that a strengthening of Patrikis’ result should hold, giving Galois representations into certain groups intermediate between GL2 and PGL 2 ; and we verify that the predicted Galois representations do indeed exist. On the computational side, we give an algorithm to compute non-paritious Hilbert modular forms using definite quaternion algebras. To our knowledge, this is the first time such a general method has been presented. We end the article with an example.
publishDate 2019
dc.date.none.fl_str_mv 2019-06-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/119772
Dembélé, Lassina; Loeffler, David; Pacetti, Ariel Martín; Non-paritious Hilbert modular forms; Springer; Mathematische Zeitschrift; 292; 1-2; 1-6-2019; 361-385
0025-5874
1432-1823
CONICET Digital
CONICET
url http://hdl.handle.net/11336/119772
identifier_str_mv Dembélé, Lassina; Loeffler, David; Pacetti, Ariel Martín; Non-paritious Hilbert modular forms; Springer; Mathematische Zeitschrift; 292; 1-2; 1-6-2019; 361-385
0025-5874
1432-1823
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s00209-019-02229-5
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00209-019-02229-5
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268600495243264
score 13.13397