Non-paritious Hilbert modular forms
- Autores
- Dembélé, Lassina; Loeffler, David; Pacetti, Ariel Martín
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The arithmetic of Hilbert modular forms has been extensively studied under the assumption that the forms concerned are “paritious”—all the components of the weight are congruent modulo 2. In contrast, non-paritious Hilbert modular forms have been relatively little studied, both from a theoretical and a computational standpoint. In this article, we aim to redress the balance somewhat by studying the arithmetic of non-paritious Hilbert modular eigenforms. On the theoretical side, our starting point is a theorem of Patrikis, which associates projectiveℓ-adic Galois representations to these forms. We show that a general conjecture of Buzzard and Gee actually predicts that a strengthening of Patrikis’ result should hold, giving Galois representations into certain groups intermediate between GL2 and PGL 2 ; and we verify that the predicted Galois representations do indeed exist. On the computational side, we give an algorithm to compute non-paritious Hilbert modular forms using definite quaternion algebras. To our knowledge, this is the first time such a general method has been presented. We end the article with an example.
Fil: Dembélé, Lassina. Institute Max Planck For Mathematics; Alemania
Fil: Loeffler, David. University of Warwick; Reino Unido
Fil: Pacetti, Ariel Martín. University of Warwick; Reino Unido. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
GALOIS REPRESENTATIONS
HILBERT MODULAR FORMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/119772
Ver los metadatos del registro completo
id |
CONICETDig_dc4da0fea922e8bca54f57e096161c57 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/119772 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Non-paritious Hilbert modular formsDembélé, LassinaLoeffler, DavidPacetti, Ariel MartínGALOIS REPRESENTATIONSHILBERT MODULAR FORMShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The arithmetic of Hilbert modular forms has been extensively studied under the assumption that the forms concerned are “paritious”—all the components of the weight are congruent modulo 2. In contrast, non-paritious Hilbert modular forms have been relatively little studied, both from a theoretical and a computational standpoint. In this article, we aim to redress the balance somewhat by studying the arithmetic of non-paritious Hilbert modular eigenforms. On the theoretical side, our starting point is a theorem of Patrikis, which associates projectiveℓ-adic Galois representations to these forms. We show that a general conjecture of Buzzard and Gee actually predicts that a strengthening of Patrikis’ result should hold, giving Galois representations into certain groups intermediate between GL2 and PGL 2 ; and we verify that the predicted Galois representations do indeed exist. On the computational side, we give an algorithm to compute non-paritious Hilbert modular forms using definite quaternion algebras. To our knowledge, this is the first time such a general method has been presented. We end the article with an example.Fil: Dembélé, Lassina. Institute Max Planck For Mathematics; AlemaniaFil: Loeffler, David. University of Warwick; Reino UnidoFil: Pacetti, Ariel Martín. University of Warwick; Reino Unido. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaSpringer2019-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/119772Dembélé, Lassina; Loeffler, David; Pacetti, Ariel Martín; Non-paritious Hilbert modular forms; Springer; Mathematische Zeitschrift; 292; 1-2; 1-6-2019; 361-3850025-58741432-1823CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00209-019-02229-5info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00209-019-02229-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:24Zoai:ri.conicet.gov.ar:11336/119772instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:25.127CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Non-paritious Hilbert modular forms |
title |
Non-paritious Hilbert modular forms |
spellingShingle |
Non-paritious Hilbert modular forms Dembélé, Lassina GALOIS REPRESENTATIONS HILBERT MODULAR FORMS |
title_short |
Non-paritious Hilbert modular forms |
title_full |
Non-paritious Hilbert modular forms |
title_fullStr |
Non-paritious Hilbert modular forms |
title_full_unstemmed |
Non-paritious Hilbert modular forms |
title_sort |
Non-paritious Hilbert modular forms |
dc.creator.none.fl_str_mv |
Dembélé, Lassina Loeffler, David Pacetti, Ariel Martín |
author |
Dembélé, Lassina |
author_facet |
Dembélé, Lassina Loeffler, David Pacetti, Ariel Martín |
author_role |
author |
author2 |
Loeffler, David Pacetti, Ariel Martín |
author2_role |
author author |
dc.subject.none.fl_str_mv |
GALOIS REPRESENTATIONS HILBERT MODULAR FORMS |
topic |
GALOIS REPRESENTATIONS HILBERT MODULAR FORMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The arithmetic of Hilbert modular forms has been extensively studied under the assumption that the forms concerned are “paritious”—all the components of the weight are congruent modulo 2. In contrast, non-paritious Hilbert modular forms have been relatively little studied, both from a theoretical and a computational standpoint. In this article, we aim to redress the balance somewhat by studying the arithmetic of non-paritious Hilbert modular eigenforms. On the theoretical side, our starting point is a theorem of Patrikis, which associates projectiveℓ-adic Galois representations to these forms. We show that a general conjecture of Buzzard and Gee actually predicts that a strengthening of Patrikis’ result should hold, giving Galois representations into certain groups intermediate between GL2 and PGL 2 ; and we verify that the predicted Galois representations do indeed exist. On the computational side, we give an algorithm to compute non-paritious Hilbert modular forms using definite quaternion algebras. To our knowledge, this is the first time such a general method has been presented. We end the article with an example. Fil: Dembélé, Lassina. Institute Max Planck For Mathematics; Alemania Fil: Loeffler, David. University of Warwick; Reino Unido Fil: Pacetti, Ariel Martín. University of Warwick; Reino Unido. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
The arithmetic of Hilbert modular forms has been extensively studied under the assumption that the forms concerned are “paritious”—all the components of the weight are congruent modulo 2. In contrast, non-paritious Hilbert modular forms have been relatively little studied, both from a theoretical and a computational standpoint. In this article, we aim to redress the balance somewhat by studying the arithmetic of non-paritious Hilbert modular eigenforms. On the theoretical side, our starting point is a theorem of Patrikis, which associates projectiveℓ-adic Galois representations to these forms. We show that a general conjecture of Buzzard and Gee actually predicts that a strengthening of Patrikis’ result should hold, giving Galois representations into certain groups intermediate between GL2 and PGL 2 ; and we verify that the predicted Galois representations do indeed exist. On the computational side, we give an algorithm to compute non-paritious Hilbert modular forms using definite quaternion algebras. To our knowledge, this is the first time such a general method has been presented. We end the article with an example. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-06-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/119772 Dembélé, Lassina; Loeffler, David; Pacetti, Ariel Martín; Non-paritious Hilbert modular forms; Springer; Mathematische Zeitschrift; 292; 1-2; 1-6-2019; 361-385 0025-5874 1432-1823 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/119772 |
identifier_str_mv |
Dembélé, Lassina; Loeffler, David; Pacetti, Ariel Martín; Non-paritious Hilbert modular forms; Springer; Mathematische Zeitschrift; 292; 1-2; 1-6-2019; 361-385 0025-5874 1432-1823 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00209-019-02229-5 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00209-019-02229-5 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268600495243264 |
score |
13.13397 |