Frequently recurrence properties and block families
- Autores
- Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove that reiteratively hypercyclic operators have perfect spectrum. Consequently, it follows that there exist separable infinite dimensional Banach spaces that do not support any reiteratively hypercyclic operator. For this, we study F-recurrence and almost F-recurrence of operators for general families and in particular for a special class of families, called block families.
Fil: Cardeccia, Rodrigo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina - Materia
-
Frequently recurrent operators
Reiteratively hypercylic operators
Hereditary upward families - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/277045
Ver los metadatos del registro completo
| id |
CONICETDig_32dc28fe79cbc5a3899674ce7d60a97e |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/277045 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Frequently recurrence properties and block familiesCardeccia, Rodrigo AlejandroMuro, Luis Santiago MiguelFrequently recurrent operatorsReiteratively hypercylic operatorsHereditary upward familieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove that reiteratively hypercyclic operators have perfect spectrum. Consequently, it follows that there exist separable infinite dimensional Banach spaces that do not support any reiteratively hypercyclic operator. For this, we study F-recurrence and almost F-recurrence of operators for general families and in particular for a special class of families, called block families.Fil: Cardeccia, Rodrigo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaReal Acad Ciencias Exactas Fisicas & Naturales2025-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/277045Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel; Frequently recurrence properties and block families; Real Acad Ciencias Exactas Fisicas & Naturales; Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A-matematicas; 119; 3; 4-2025; 1-311578-73031579-1505CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s13398-025-01724-1info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2204.13542info:eu-repo/semantics/altIdentifier/doi/10.1007/s13398-025-01724-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T14:55:34Zoai:ri.conicet.gov.ar:11336/277045instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 14:55:35.148CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Frequently recurrence properties and block families |
| title |
Frequently recurrence properties and block families |
| spellingShingle |
Frequently recurrence properties and block families Cardeccia, Rodrigo Alejandro Frequently recurrent operators Reiteratively hypercylic operators Hereditary upward families |
| title_short |
Frequently recurrence properties and block families |
| title_full |
Frequently recurrence properties and block families |
| title_fullStr |
Frequently recurrence properties and block families |
| title_full_unstemmed |
Frequently recurrence properties and block families |
| title_sort |
Frequently recurrence properties and block families |
| dc.creator.none.fl_str_mv |
Cardeccia, Rodrigo Alejandro Muro, Luis Santiago Miguel |
| author |
Cardeccia, Rodrigo Alejandro |
| author_facet |
Cardeccia, Rodrigo Alejandro Muro, Luis Santiago Miguel |
| author_role |
author |
| author2 |
Muro, Luis Santiago Miguel |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Frequently recurrent operators Reiteratively hypercylic operators Hereditary upward families |
| topic |
Frequently recurrent operators Reiteratively hypercylic operators Hereditary upward families |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We prove that reiteratively hypercyclic operators have perfect spectrum. Consequently, it follows that there exist separable infinite dimensional Banach spaces that do not support any reiteratively hypercyclic operator. For this, we study F-recurrence and almost F-recurrence of operators for general families and in particular for a special class of families, called block families. Fil: Cardeccia, Rodrigo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina |
| description |
We prove that reiteratively hypercyclic operators have perfect spectrum. Consequently, it follows that there exist separable infinite dimensional Banach spaces that do not support any reiteratively hypercyclic operator. For this, we study F-recurrence and almost F-recurrence of operators for general families and in particular for a special class of families, called block families. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/277045 Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel; Frequently recurrence properties and block families; Real Acad Ciencias Exactas Fisicas & Naturales; Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A-matematicas; 119; 3; 4-2025; 1-31 1578-7303 1579-1505 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/277045 |
| identifier_str_mv |
Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel; Frequently recurrence properties and block families; Real Acad Ciencias Exactas Fisicas & Naturales; Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A-matematicas; 119; 3; 4-2025; 1-31 1578-7303 1579-1505 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s13398-025-01724-1 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2204.13542 info:eu-repo/semantics/altIdentifier/doi/10.1007/s13398-025-01724-1 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Real Acad Ciencias Exactas Fisicas & Naturales |
| publisher.none.fl_str_mv |
Real Acad Ciencias Exactas Fisicas & Naturales |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335861642821632 |
| score |
12.952241 |