Frequently recurrence properties and block families

Autores
Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We prove that reiteratively hypercyclic operators have perfect spectrum. Consequently, it follows that there exist separable infinite dimensional Banach spaces that do not support any reiteratively hypercyclic operator. For this, we study F-recurrence and almost F-recurrence of operators for general families and in particular for a special class of families, called block families.
Fil: Cardeccia, Rodrigo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Materia
Frequently recurrent operators
Reiteratively hypercylic operators
Hereditary upward families
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/277045

id CONICETDig_32dc28fe79cbc5a3899674ce7d60a97e
oai_identifier_str oai:ri.conicet.gov.ar:11336/277045
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Frequently recurrence properties and block familiesCardeccia, Rodrigo AlejandroMuro, Luis Santiago MiguelFrequently recurrent operatorsReiteratively hypercylic operatorsHereditary upward familieshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove that reiteratively hypercyclic operators have perfect spectrum. Consequently, it follows that there exist separable infinite dimensional Banach spaces that do not support any reiteratively hypercyclic operator. For this, we study F-recurrence and almost F-recurrence of operators for general families and in particular for a special class of families, called block families.Fil: Cardeccia, Rodrigo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaReal Acad Ciencias Exactas Fisicas & Naturales2025-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/277045Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel; Frequently recurrence properties and block families; Real Acad Ciencias Exactas Fisicas & Naturales; Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A-matematicas; 119; 3; 4-2025; 1-311578-73031579-1505CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s13398-025-01724-1info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2204.13542info:eu-repo/semantics/altIdentifier/doi/10.1007/s13398-025-01724-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T14:55:34Zoai:ri.conicet.gov.ar:11336/277045instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 14:55:35.148CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Frequently recurrence properties and block families
title Frequently recurrence properties and block families
spellingShingle Frequently recurrence properties and block families
Cardeccia, Rodrigo Alejandro
Frequently recurrent operators
Reiteratively hypercylic operators
Hereditary upward families
title_short Frequently recurrence properties and block families
title_full Frequently recurrence properties and block families
title_fullStr Frequently recurrence properties and block families
title_full_unstemmed Frequently recurrence properties and block families
title_sort Frequently recurrence properties and block families
dc.creator.none.fl_str_mv Cardeccia, Rodrigo Alejandro
Muro, Luis Santiago Miguel
author Cardeccia, Rodrigo Alejandro
author_facet Cardeccia, Rodrigo Alejandro
Muro, Luis Santiago Miguel
author_role author
author2 Muro, Luis Santiago Miguel
author2_role author
dc.subject.none.fl_str_mv Frequently recurrent operators
Reiteratively hypercylic operators
Hereditary upward families
topic Frequently recurrent operators
Reiteratively hypercylic operators
Hereditary upward families
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We prove that reiteratively hypercyclic operators have perfect spectrum. Consequently, it follows that there exist separable infinite dimensional Banach spaces that do not support any reiteratively hypercyclic operator. For this, we study F-recurrence and almost F-recurrence of operators for general families and in particular for a special class of families, called block families.
Fil: Cardeccia, Rodrigo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
description We prove that reiteratively hypercyclic operators have perfect spectrum. Consequently, it follows that there exist separable infinite dimensional Banach spaces that do not support any reiteratively hypercyclic operator. For this, we study F-recurrence and almost F-recurrence of operators for general families and in particular for a special class of families, called block families.
publishDate 2025
dc.date.none.fl_str_mv 2025-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/277045
Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel; Frequently recurrence properties and block families; Real Acad Ciencias Exactas Fisicas & Naturales; Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A-matematicas; 119; 3; 4-2025; 1-31
1578-7303
1579-1505
CONICET Digital
CONICET
url http://hdl.handle.net/11336/277045
identifier_str_mv Cardeccia, Rodrigo Alejandro; Muro, Luis Santiago Miguel; Frequently recurrence properties and block families; Real Acad Ciencias Exactas Fisicas & Naturales; Revista de la Real Academia de Ciencias Exactas Fisicas y Naturales Serie A-matematicas; 119; 3; 4-2025; 1-31
1578-7303
1579-1505
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s13398-025-01724-1
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2204.13542
info:eu-repo/semantics/altIdentifier/doi/10.1007/s13398-025-01724-1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Real Acad Ciencias Exactas Fisicas & Naturales
publisher.none.fl_str_mv Real Acad Ciencias Exactas Fisicas & Naturales
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1852335861642821632
score 12.952241