Dissipative effects in nonlinear Klein-Gordon dynamics

Autores
Plastino, Angel Ricardo; Tsallis, C.
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider dissipation in a recently proposed nonlinear Klein-Gordon dynamics that admits exact time-dependent solutions of the power-law form ei(kx>wt) q , involving the q-exponential function naturally arising within the nonextensive thermostatistics (ezq ≡ [1∗ (1>q)z]1/(1>q), with ez 1 < ez). These basic solutions behave like free particles, complying, for all values of q, with the de Broglie-Einstein relations p < >k, E < >> and satisfying a dispersion law corresponding to the relativistic energy-momentum relation E2 < c2p2 ∗ m2c4. The dissipative effects explored here are described by an evolution equation that can be regarded as a nonlinear generalization of the celebrated telegraph equation, unifying within one single theoretical framework the nonlinear Klein-Gordon equation, a nonlinear Schrodinger equation, and the power-law diffusion (porousmedia) equation. The associated dynamics exhibits physically appealing traveling solutions of the q-plane wave form with a complex frequency > and a q-Gaussian square modulus profile.
Fil: Plastino, Angel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina
Fil: Tsallis, C.. Centro Brasileiro de Pesquisas Fisicas; Brasil. Santa Fe Institute; Estados Unidos
Materia
Nonlinear Klein-Gordon Equation
Telegraphers Equation
Dissipation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17473

id CONICETDig_2086b78a5c3a7abe4e7c11bc1e531730
oai_identifier_str oai:ri.conicet.gov.ar:11336/17473
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dissipative effects in nonlinear Klein-Gordon dynamicsPlastino, Angel RicardoTsallis, C.Nonlinear Klein-Gordon EquationTelegraphers EquationDissipationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We consider dissipation in a recently proposed nonlinear Klein-Gordon dynamics that admits exact time-dependent solutions of the power-law form ei(kx>wt) q , involving the q-exponential function naturally arising within the nonextensive thermostatistics (ezq ≡ [1∗ (1>q)z]1/(1>q), with ez 1 < ez). These basic solutions behave like free particles, complying, for all values of q, with the de Broglie-Einstein relations p < >k, E < >> and satisfying a dispersion law corresponding to the relativistic energy-momentum relation E2 < c2p2 ∗ m2c4. The dissipative effects explored here are described by an evolution equation that can be regarded as a nonlinear generalization of the celebrated telegraph equation, unifying within one single theoretical framework the nonlinear Klein-Gordon equation, a nonlinear Schrodinger equation, and the power-law diffusion (porousmedia) equation. The associated dynamics exhibits physically appealing traveling solutions of the q-plane wave form with a complex frequency > and a q-Gaussian square modulus profile.Fil: Plastino, Angel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; ArgentinaFil: Tsallis, C.. Centro Brasileiro de Pesquisas Fisicas; Brasil. Santa Fe Institute; Estados UnidosEurophysics Letters2016-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17473Plastino, Angel Ricardo; Tsallis, C.; Dissipative effects in nonlinear Klein-Gordon dynamics; Europhysics Letters; Europhysics Letters; 113; 5; 3-2016; 1-6; 500050295-5075enginfo:eu-repo/semantics/altIdentifier/doi/10.1209/0295-5075/113/50005info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1209/0295-5075/113/50005/metainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:59Zoai:ri.conicet.gov.ar:11336/17473instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:59.702CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dissipative effects in nonlinear Klein-Gordon dynamics
title Dissipative effects in nonlinear Klein-Gordon dynamics
spellingShingle Dissipative effects in nonlinear Klein-Gordon dynamics
Plastino, Angel Ricardo
Nonlinear Klein-Gordon Equation
Telegraphers Equation
Dissipation
title_short Dissipative effects in nonlinear Klein-Gordon dynamics
title_full Dissipative effects in nonlinear Klein-Gordon dynamics
title_fullStr Dissipative effects in nonlinear Klein-Gordon dynamics
title_full_unstemmed Dissipative effects in nonlinear Klein-Gordon dynamics
title_sort Dissipative effects in nonlinear Klein-Gordon dynamics
dc.creator.none.fl_str_mv Plastino, Angel Ricardo
Tsallis, C.
author Plastino, Angel Ricardo
author_facet Plastino, Angel Ricardo
Tsallis, C.
author_role author
author2 Tsallis, C.
author2_role author
dc.subject.none.fl_str_mv Nonlinear Klein-Gordon Equation
Telegraphers Equation
Dissipation
topic Nonlinear Klein-Gordon Equation
Telegraphers Equation
Dissipation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider dissipation in a recently proposed nonlinear Klein-Gordon dynamics that admits exact time-dependent solutions of the power-law form ei(kx>wt) q , involving the q-exponential function naturally arising within the nonextensive thermostatistics (ezq ≡ [1∗ (1>q)z]1/(1>q), with ez 1 < ez). These basic solutions behave like free particles, complying, for all values of q, with the de Broglie-Einstein relations p < >k, E < >> and satisfying a dispersion law corresponding to the relativistic energy-momentum relation E2 < c2p2 ∗ m2c4. The dissipative effects explored here are described by an evolution equation that can be regarded as a nonlinear generalization of the celebrated telegraph equation, unifying within one single theoretical framework the nonlinear Klein-Gordon equation, a nonlinear Schrodinger equation, and the power-law diffusion (porousmedia) equation. The associated dynamics exhibits physically appealing traveling solutions of the q-plane wave form with a complex frequency > and a q-Gaussian square modulus profile.
Fil: Plastino, Angel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina
Fil: Tsallis, C.. Centro Brasileiro de Pesquisas Fisicas; Brasil. Santa Fe Institute; Estados Unidos
description We consider dissipation in a recently proposed nonlinear Klein-Gordon dynamics that admits exact time-dependent solutions of the power-law form ei(kx>wt) q , involving the q-exponential function naturally arising within the nonextensive thermostatistics (ezq ≡ [1∗ (1>q)z]1/(1>q), with ez 1 < ez). These basic solutions behave like free particles, complying, for all values of q, with the de Broglie-Einstein relations p < >k, E < >> and satisfying a dispersion law corresponding to the relativistic energy-momentum relation E2 < c2p2 ∗ m2c4. The dissipative effects explored here are described by an evolution equation that can be regarded as a nonlinear generalization of the celebrated telegraph equation, unifying within one single theoretical framework the nonlinear Klein-Gordon equation, a nonlinear Schrodinger equation, and the power-law diffusion (porousmedia) equation. The associated dynamics exhibits physically appealing traveling solutions of the q-plane wave form with a complex frequency > and a q-Gaussian square modulus profile.
publishDate 2016
dc.date.none.fl_str_mv 2016-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17473
Plastino, Angel Ricardo; Tsallis, C.; Dissipative effects in nonlinear Klein-Gordon dynamics; Europhysics Letters; Europhysics Letters; 113; 5; 3-2016; 1-6; 50005
0295-5075
url http://hdl.handle.net/11336/17473
identifier_str_mv Plastino, Angel Ricardo; Tsallis, C.; Dissipative effects in nonlinear Klein-Gordon dynamics; Europhysics Letters; Europhysics Letters; 113; 5; 3-2016; 1-6; 50005
0295-5075
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1209/0295-5075/113/50005
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1209/0295-5075/113/50005/meta
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Europhysics Letters
publisher.none.fl_str_mv Europhysics Letters
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613049440272384
score 13.070432