Dissipative effects in nonlinear Klein-Gordon dynamics
- Autores
- Plastino, Angel Ricardo; Tsallis, C.
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider dissipation in a recently proposed nonlinear Klein-Gordon dynamics that admits exact time-dependent solutions of the power-law form ei(kx>wt) q , involving the q-exponential function naturally arising within the nonextensive thermostatistics (ezq ≡ [1∗ (1>q)z]1/(1>q), with ez 1 < ez). These basic solutions behave like free particles, complying, for all values of q, with the de Broglie-Einstein relations p < >k, E < >> and satisfying a dispersion law corresponding to the relativistic energy-momentum relation E2 < c2p2 ∗ m2c4. The dissipative effects explored here are described by an evolution equation that can be regarded as a nonlinear generalization of the celebrated telegraph equation, unifying within one single theoretical framework the nonlinear Klein-Gordon equation, a nonlinear Schrodinger equation, and the power-law diffusion (porousmedia) equation. The associated dynamics exhibits physically appealing traveling solutions of the q-plane wave form with a complex frequency > and a q-Gaussian square modulus profile.
Fil: Plastino, Angel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina
Fil: Tsallis, C.. Centro Brasileiro de Pesquisas Fisicas; Brasil. Santa Fe Institute; Estados Unidos - Materia
-
Nonlinear Klein-Gordon Equation
Telegraphers Equation
Dissipation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/17473
Ver los metadatos del registro completo
id |
CONICETDig_2086b78a5c3a7abe4e7c11bc1e531730 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/17473 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dissipative effects in nonlinear Klein-Gordon dynamicsPlastino, Angel RicardoTsallis, C.Nonlinear Klein-Gordon EquationTelegraphers EquationDissipationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We consider dissipation in a recently proposed nonlinear Klein-Gordon dynamics that admits exact time-dependent solutions of the power-law form ei(kx>wt) q , involving the q-exponential function naturally arising within the nonextensive thermostatistics (ezq ≡ [1∗ (1>q)z]1/(1>q), with ez 1 < ez). These basic solutions behave like free particles, complying, for all values of q, with the de Broglie-Einstein relations p < >k, E < >> and satisfying a dispersion law corresponding to the relativistic energy-momentum relation E2 < c2p2 ∗ m2c4. The dissipative effects explored here are described by an evolution equation that can be regarded as a nonlinear generalization of the celebrated telegraph equation, unifying within one single theoretical framework the nonlinear Klein-Gordon equation, a nonlinear Schrodinger equation, and the power-law diffusion (porousmedia) equation. The associated dynamics exhibits physically appealing traveling solutions of the q-plane wave form with a complex frequency > and a q-Gaussian square modulus profile.Fil: Plastino, Angel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; ArgentinaFil: Tsallis, C.. Centro Brasileiro de Pesquisas Fisicas; Brasil. Santa Fe Institute; Estados UnidosEurophysics Letters2016-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17473Plastino, Angel Ricardo; Tsallis, C.; Dissipative effects in nonlinear Klein-Gordon dynamics; Europhysics Letters; Europhysics Letters; 113; 5; 3-2016; 1-6; 500050295-5075enginfo:eu-repo/semantics/altIdentifier/doi/10.1209/0295-5075/113/50005info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1209/0295-5075/113/50005/metainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:59Zoai:ri.conicet.gov.ar:11336/17473instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:59.702CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dissipative effects in nonlinear Klein-Gordon dynamics |
title |
Dissipative effects in nonlinear Klein-Gordon dynamics |
spellingShingle |
Dissipative effects in nonlinear Klein-Gordon dynamics Plastino, Angel Ricardo Nonlinear Klein-Gordon Equation Telegraphers Equation Dissipation |
title_short |
Dissipative effects in nonlinear Klein-Gordon dynamics |
title_full |
Dissipative effects in nonlinear Klein-Gordon dynamics |
title_fullStr |
Dissipative effects in nonlinear Klein-Gordon dynamics |
title_full_unstemmed |
Dissipative effects in nonlinear Klein-Gordon dynamics |
title_sort |
Dissipative effects in nonlinear Klein-Gordon dynamics |
dc.creator.none.fl_str_mv |
Plastino, Angel Ricardo Tsallis, C. |
author |
Plastino, Angel Ricardo |
author_facet |
Plastino, Angel Ricardo Tsallis, C. |
author_role |
author |
author2 |
Tsallis, C. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Nonlinear Klein-Gordon Equation Telegraphers Equation Dissipation |
topic |
Nonlinear Klein-Gordon Equation Telegraphers Equation Dissipation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider dissipation in a recently proposed nonlinear Klein-Gordon dynamics that admits exact time-dependent solutions of the power-law form ei(kx>wt) q , involving the q-exponential function naturally arising within the nonextensive thermostatistics (ezq ≡ [1∗ (1>q)z]1/(1>q), with ez 1 < ez). These basic solutions behave like free particles, complying, for all values of q, with the de Broglie-Einstein relations p < >k, E < >> and satisfying a dispersion law corresponding to the relativistic energy-momentum relation E2 < c2p2 ∗ m2c4. The dissipative effects explored here are described by an evolution equation that can be regarded as a nonlinear generalization of the celebrated telegraph equation, unifying within one single theoretical framework the nonlinear Klein-Gordon equation, a nonlinear Schrodinger equation, and the power-law diffusion (porousmedia) equation. The associated dynamics exhibits physically appealing traveling solutions of the q-plane wave form with a complex frequency > and a q-Gaussian square modulus profile. Fil: Plastino, Angel Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Noroeste de la Provincia de Buenos Aires; Argentina Fil: Tsallis, C.. Centro Brasileiro de Pesquisas Fisicas; Brasil. Santa Fe Institute; Estados Unidos |
description |
We consider dissipation in a recently proposed nonlinear Klein-Gordon dynamics that admits exact time-dependent solutions of the power-law form ei(kx>wt) q , involving the q-exponential function naturally arising within the nonextensive thermostatistics (ezq ≡ [1∗ (1>q)z]1/(1>q), with ez 1 < ez). These basic solutions behave like free particles, complying, for all values of q, with the de Broglie-Einstein relations p < >k, E < >> and satisfying a dispersion law corresponding to the relativistic energy-momentum relation E2 < c2p2 ∗ m2c4. The dissipative effects explored here are described by an evolution equation that can be regarded as a nonlinear generalization of the celebrated telegraph equation, unifying within one single theoretical framework the nonlinear Klein-Gordon equation, a nonlinear Schrodinger equation, and the power-law diffusion (porousmedia) equation. The associated dynamics exhibits physically appealing traveling solutions of the q-plane wave form with a complex frequency > and a q-Gaussian square modulus profile. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/17473 Plastino, Angel Ricardo; Tsallis, C.; Dissipative effects in nonlinear Klein-Gordon dynamics; Europhysics Letters; Europhysics Letters; 113; 5; 3-2016; 1-6; 50005 0295-5075 |
url |
http://hdl.handle.net/11336/17473 |
identifier_str_mv |
Plastino, Angel Ricardo; Tsallis, C.; Dissipative effects in nonlinear Klein-Gordon dynamics; Europhysics Letters; Europhysics Letters; 113; 5; 3-2016; 1-6; 50005 0295-5075 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1209/0295-5075/113/50005 info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1209/0295-5075/113/50005/meta |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Europhysics Letters |
publisher.none.fl_str_mv |
Europhysics Letters |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613049440272384 |
score |
13.070432 |